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Abstract. Human decision-making is defined as a cognitive process in 
which a preferred option or a course of action is chosen from among a set of 
alternatives, based on certain information or considerations. One important 
facet of decision-making is to facilitate an appropriate response to a dy-
namic and uncertain environment. Dynamic decision-making is inherently 
complex, and it is characterized by multiple, interdependent, and real-time 
decisions, which occur in an environment that may change independently as 
a function of a sequence of actions. In order to acquire a certain degree of 
proficiency in such a decision making process, the decision makers often 
have to be subjected to a lengthy practice. This subsequently implies that 
decision-making in a dynamic environment is based on experience, and fur-
ther reinforces the notion of dynamic decision making as a cognitive skill 
that can be developed through practice. As with the acquisition of other 
cognitive skills, decision makers improve their decision-making skills 
through the accumulation, recognition and refinement of encountered deci-
sion episodes. Pivotal to the development of cognitive skills including  
dynamic decision-making are the abilities to acquire new knowledge (learn-
ing) and to retain such knowledge for future references (memory). The  
human procedural memory system is a facet of the brain’s computational 
fabric that exhibits the capacity for learning and memory, and constitutes a 
vast array of meticulously calibrated knowledge bases for coordinated be-
haviors and skills that are manifested in everyday life. This chapter de-
scribes the use of a brain inspired, cerebellar-based learning memory model 
named PSECMAC to functionally model the process of autonomous  
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decision-making in a dynamic, complex and uncertain environment. The 
PSECMAC network is primarily modeled after the cerebellar learning 
mechanism in which repeated trainings induce a greater fidelity and preci-
sion in the knowledge acquired. PSECMAC employs an experience-driven 
adaptive quantization scheme to construct its computing structure by allo-
cating more memory cells to significant regions of the input stimuli feature 
space. The validity of this neurocognitive approach to decision making is 
subsequently evaluated by employing the PSECMAC learning memory 
model to dynamically model the autonomous decision making process of 
insulin regulation in the physiological control of the human glucose meta-
bolic process. The objective of the study is to approximate the metabolic in-
sulin dynamics of a healthy subject in response to food intakes. In this case, 
the physiological regulation of insulin can be perceived as a biological ex-
ample of a dynamic decision making process in which the human body dy-
namically determines the amount of insulin necessary to maintain bodily 
homeostasis in response to food disturbances. The preliminary experimental 
results are encouraging. 

Keywords: autonomous decision making, human cerebellum, procedural 
memory, PSECMAC, diabetes, insulin dynamics. 

1   Introduction 

Human decision making is defined as a cognitive process in which a preferred op-
tion or a course of actions is chosen from among a set of alternatives, based on cer-
tain information or considerations [1]. It forms a vital and integral component of our 
everyday life, and common examples range from trivial decisions such as what to 
eat or where to shop, to more elaborate decisions, such as deciding on the next most 
advantageous move in a chess play or thinking of how to exploit new business op-
portunities. The human decision making process involves the gathering and process-
ing of current available choices of alternatives; integrating them with their expected 
outcomes based on the recall from previous encounters, as well as subsequent choice 
evaluation with respect to the intended goals [2,3]. Decision making is ubiquitous in 
everyday life and it is reflected through our behavioral responses. Since each of us 
behave differently and is varied in our responses to the myriad choices, it is there-
fore of great interest to study the cognitive mechanisms and faculties underlying the 
human decision making process, so as to identify the affective and differentiating 
factors behind the difference in performance of each decision maker. 

An important facet of decision making is to facilitate an appropriate response to 
a dynamic and uncertain environment. Dynamic decision making is characterized 
by multiple, interdependent, and real-time decisions, which occur in an environ-
ment that changes independently as a function of a sequence of actions [4, 5]. 
Such a decision making process is dynamically complex, as it involves both time 
delays and decisions that can positively or negatively influence one another in 
complicated ways. In order to establish a certain degree of logical and reasonable 
causal and temporal relationships of decisions and outcomes under these dynamic 
circumstances, the decision makers often have to be subjected to a lengthy  
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practice [6]. This subsequently implies that decision making in a dynamic envi-
ronment is based on experience, and further reinforces the notion of dynamic 
decision making as a cognitive skill that can be acquired through practice. Indeed, 
a recent research to understand how decision-making skills are developed in dy-
namic situations has revealed that, over the time, there is an increase in the usage 
of the accumulated prior knowledge and past experiences by the decision makers 
to facilitate their thinking process [7]. 

Cognitive skill, on the other hand, is defined as the ability to use one’s knowl-
edge effectively and readily in the execution of cognitive processes [8]. With 
reference to cognitive skill acquisition, learning from examples has been estab-
lished as the primary cause driving the gradual transition from a novice’s slow and 
laborious performance to an expert’s rapid and accurate execution of a skilled 
behavior [9]. It is widely believed that any skill development process requires the 
individual to progress through a series of learning stages and involves some form 
of memory for the retention of the acquired knowledge [8–10]. Based on the well-
established Fitts and Posner’s three stage model of skill acquisition [11, 12], learn-
ing is hypothesized to proceed through three consecutive phases of development: 
the cognitive phase, the associative phase, and the autonomous phase. In this 
model, it is contemplated that the critical component of skill learning lies in the 
individual’s ability to differentiate and to filter a subset of stimuli that is important 
for the performance of the skilled behavior.  

Learning commences with the cognitive phase, in which the learner consciously 
attempts to form a general understanding of the task undertaken, and a set of infor-
mation pertaining to the task is accumulated and retained in memory. This stored 
information forms the basic building block of the knowledge base to be acquired 
from the learning process. In this phase, the mental processing of information is 
slow and tedious, and it requires a lot of cognitive resources. In the associative 
phase, the individual learns to respond more efficiently by retaining effective ac-
tions and eliminating the ineffective ones. Experience and repeated exposures to 
the learning episodes serve to amplify the salient features of the skill, and as per-
formance is repeated, the subject learns new patterns of responding by recognizing 
cues and stimuli that are more significant than others, thereby directing attention 
towards those cues. These patterns of associations form the knowledge base for the 
attention-direction of the learner. As the learner becomes competent at the task, the 
discrimination of exogenous stimuli and cues are performed more rapidly and in-
volves a lesser degree of consciousness. The autonomous phase refers to the stage 
during which this discrimination process is performed subconsciously, allowing an 
expert of a task to very rapidly discriminate the many stimuli and to focus on the 
highly specific cues. An expert’s profound knowledge, accumulated through re-
peated practice, allows for a recognition of interrelationships among problem ele-
ments that is simply not available to novices [9]. 

As with the acquisition of other cognitive skills, decision makers improve their 
decision making skills through the accumulation, recognition and refinement of 
encountered decision episodes [7, 8]. Such skills developed primarily through the 
recognition of salient features and an increased familiarity to each of the past 
episodes. The knowledge of previous decision episodes becomes the primary 
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differentiating factor between a novice and the expert decision makers. Novice 
decision makers follow decision-heuristics more closely, resulting in lower effi-
ciency due to the exhaustive search for familiar features in their memories. Skilled 
decision makers, on the other hand, exploit their accumulated prior knowledge to 
conduct a very selective, attention and episodic-triggered guided search to achieve 
great computational efficiency. Dynamic decision making is a skill that develops 
via the learning and acquisition of domain-specific knowledge, and that the under-
lying mechanism of this knowledge-acquisition process involves the accumulation 
and retrieval of decision instances [7, 13–15]. Hence, the development of the hu-
man decision making process requires the ability to acquire new knowledge 
(learning) and to store such information for future use (memory). Learning and 
memory are cognitive faculties sub-served by the massive connectivity of the 
brain circuitry. 

The human brain is undoubtedly still by far the most powerful computing ma-
chine available today, in which complex networks of neurons collaborated in a 
highly non-linear manner to create a massive information computing structure. As 
part of the efforts to understand the human decision making process, neurocogni-
tive science is employed to study the underlying mechanisms of cognitive skill 
acquisition. That is, learning and memory. The primary objective is to study and 
develop functional models of the brain systems that exhibit the ability to learn and 
acquire knowledge from exogenous inputs and the capacity to store the acquired 
knowledge for subsequent usage. This subsequently leads to the construction of 
computational models of learning memory systems, which aim to provide a func-
tional description of the mechanisms and processes involved in learning and 
memory formation. Such functional models, however, do not attempt to depict 
every physiological detail of the corresponding memory systems in the brain. 
Instead, they sought to emulate the higher level cognitive faculties responsible for 
learning and memory. Although it would be interesting to build more physiologi-
cally realistic models, this is clearly not possible given the limited knowledge one 
has of the inner workings of the human brain today. 

 

Fig. 1. Anatomically inspired framework of major human memory systems. Adapted  
from [16]. 
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Neurophysiological studies on human and animal memory have established the 
existence of multiple brain systems responsible for memory formation, namely 
declarative (explicit), procedural (implicit) and emotional memories [16]. Ana-
tomically, each of these memory processing tracts is different, and mediated by 
distinct functional systems in the brain (see Figure 1). Each of these information 
pathways is responsible for perceptual, motor, or cognitive processing respec-
tively, and caters to memories of the same domain. Of particular interest to the 
study of decision making at the autonomous level is the procedural memory sys-
tem, which consists of the striatum and the cerebellum [16]. The putative in-
volvement of this information processing pathway in the acquisition of specific 
behavioral responses has led many researchers to consider this system as special-
ized for habit or skill memory [17]. The procedural memory pathway constitutes 
an endless array of meticulously calibrated knowledge bases for coordinated be-
haviors of habits and skills that are manifested in everyday life. There are two 
main characteristics of the procedural memory system. Firstly, knowledge re-
trieval from the procedural memory is performed unconsciously. Secondly, the 
procedural memory system is continuously being updated by experience and 
adapted by repeated exposures to learning episodes. These characteristics underlie 
the procedural memory system’s capability to acquire a wide repertoire of habits 
and skills, resulting in the subsequent capacity of the individual to display a broad 
variety of stereotyped and unconscious behavioral manifestations. 

This chapter proposes the use of a brain-inspired cerebellar-based learning 
memory model named Pseudo Self-Evolving Cerebellar Model Articulation Con-
troller (PSECMAC) to functionally model the process of autonomous dynamic 
decision making. Drawing inspirations from the neurophysiological understand-
ings of the human cerebellum, PSECMAC performs as a computational model of 
its biological counterpart and is useful for learning and knowledge acquisition in a 
dynamic, complex and ill-defined environment. In this chapter, the PSECMAC 
network is employed to model the insulin profile of the human glucose metabolic 
process when perturbed by food intakes. The human body has a well-regulated 
capacity to autonomously maintain the homeostasis of numerous biological and 
physiological processes without voluntary and conscious supervision. The regula-
tion of the glucose metabolic process through the corresponding meticulous con-
trol of insulin is one of such processes. That is, the human body’s natural insulin-
glucose regulatory mechanism represents a meticulously and finely calibrated 
autonomic decision making process for a dynamic environment that is the glucose 
metabolic cycle. This provides reinforcing support to the notion that PSECMAC 
can be employed to model the inherent knowledge driving the autonomic deci-
sions of the body’s natural mechanisms in efficiently dispensing the appropriate 
amount of insulin to regulate the blood glucose level within tight physiological 
bounds. This constitutes the primary key component in the successful manage-
ment of Type I diabetes, where PSECMAC can be employed to replicate the insu-
lin profile responsible for maintaining long-term near-normoglycemia state of a 
diabetic patient. That is, in the effort towards developing an ideal treatment regime 
for Type I diabetic patients, the ability to compute appropriate decisions on the 
amount of insulin to dispense in response to the perturbations of the glucose  
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metabolic process by exogenous disturbances due to food ingestion is an initial but 
significant step. 

The rest of this chapter is organized as follows. Section 2 briefly describes the 
neurophysiological aspects of memory and learning in the cerebellum that inspires 
the development of the PSECMAC learning memory model. Section 3 outlines the 
architecture of the proposed PSECMAC network and highlights the cerebellar-
inspired memory formation and the experience-driven learning mechanisms of the 
network. Section 4 presents an overview of diabetes and the current treatment 
protocols available, as well as motivates the physiological regulation of insulin in 
the human glucose metabolism process as a biological example of autonomous 
decision making. Section 5 demonstrates the dynamic modeling capability of the 
proposed PSECMAC network by using it to model the blood insulin profile of a 
healthy subject. Section 6 concludes this chapter. 

2   Cerebellum and the Human Procedural Memory System 

The most profound and fascinating aspects of the human intelligence are the ca-
pacity for learning and memory. Learning is defined as a process that results in a 
consistent change in behavioral responses (due to the learned knowledge) through 
repeated exposure to the environmental stimuli [9] and memory is the storage of 
this acquired knowledge [18]. The human procedural memory system is a facet of 
the brain’s information computing capacity, which represents a learning memory 
system for skills and procedures. Due to the nature of sub-conscious recall from 
this particular memory pathway, the procedural memory system is also often re-
ferred to as the “implicit knowledge” memory [19]. 

The human procedural memory system consists of the cerebellum and the stria-
tum [16]. Due to its structural neuronal organization and anatomic simplicity, the 
cerebellum is perhaps one of the few constructs in the central nervous system 
where the patterns of intrinsic connections are known in considerable details [20]. 
The fact that the cerebellar cortex has the most regular anatomy of any brain re-
gion has enabled neuroscience researchers to derive a number of important neuro-
physiological relationships on the working mechanisms of the human cerebellum. 
These in turn offer a wealth of information on the functional and physiological 
aspects of the cerebellum. The cerebellum, which in Latin means little brain, is a 
brain region important for a number of motor and cognitive functions, including 
learning and memory [21, 22].  

Although the cerebellum functions primarily as a movement regulator [23], 
there have been observations that suggested that the cerebellum also plays an 
active role in purely cognitive tasks [24]. Functional neuroimaging studies con-
ducted by Desmond and his colleagues [25] have revealed traces of evidences for 
cerebellar involvements in the activation of the working memory, implicit and 
explicit learning and memory, as well as language processing. Further support for 
the existence of cognitive function associated with the cerebellum came from 
lesion studies, in which it is observed that patients with blocked posterior inferior 
cerebellar artery encountered difficulties in learning word association tasks [17]. 
In this section, the underlying anatomical and physiological properties that  



 A NeuroCognitive Approach to Decision Making for the Reconstruction 503 

facilitate and sub-serve the knowledge acquisition and information retention capa-
bilities of the cerebellum are presented. 

2.1   Mechanisms for Information Retention in the Cerebellum  

The cerebellum is located at the bottom rear of the head (the hindbrain) directly 
above the brainstem and is highly recognizable for its structural regularity and the 
near-crystalline structure of its anatomical layout. However, despite its remarkably 
uniform anatomical structure, the cerebellum is divided into several distinct re-
gions, each of which receives projections from different portions of the brain and 
spinal cord and projects to different motor systems. This feature suggests that the 
different regions of the cerebellum perform similar computational operations but 
on different inputs [17]. 
 

 

Fig. 2. A diagram of the cerebellar circuitry. GC - Granule Cell; PC - Purkinje Cell; CN - 
Deep Cerebellar Nuclei; IO - Inferior Olive. Adapted from [28]. 

In order to perform its motor regulatory functions effectively, the cerebellum is 
provided with extensive information about the objective (intentions), the action 
(motor commands) and the outcome (feedback signals) associated with a move-
ment [26]. There are three sets of extra cerebellar afferents: the mossy fibers and 
the climbing fibers, both carrying sensory information from the periphery as well 
as sets of commands-related information from the cerebral cortex; and a set of 
mono-armigenic and cholinergic afferents, which is speculated to signal rewards 
[27]. The mossy fibers carry information originating from the spinal cord and 
brainstem, while the climbing fibers originate from the inferior olivary in the me-
dulla oblongata. 

The afferent inputs to the cerebellum flow into the granule cell layer, which is 
the input layer of the cerebellar cortex. The mossy fiber input, which carries both 
sensory afferent and cerebral efferent signals, is relayed by a massive number of 
granule cells. These granule cells work as expansion encoders of the mossy fiber 
input signals, combining the different mossy fiber inputs. Each of them extends an 
ascending axon that rises up to the molecular layer of the cerebellar cortex as 
parallel fiber, which in turn serves as the input to the Purkinje cells at the  
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cerebellar cortex. The Purkinje cells are the main computational units of the cere-
bellar cortex, whereby each of the cells draws input from the parallel fibers, the 
climbing fibers, as well as the inhibitory stellate and basket cells. The parallel 
fibers run perpendicularly to the flat fan-like dendritic arborization of the Purkinje 
cells, enabling the greatest possible number of parallel fibers and Purkinje cells 
contact per unit volume. The Purkinje cells perform linear combinations of the 
synaptic inputs, and their axons carry the outputs from the cerebellar cortex 
downward into the underlying white matter to the deep cerebellar nuclei. The 
output of the deep cerebellar nuclei forms the overall output of the cerebellum. 
Figure 2 depicts a diagram of the cerebellar circuitry. 

Memory formation in the cerebellum is facilitated by the long term information 
recollection embedded in each of its synaptic connections. The cerebellum can be 
visualized as an associative memory system, which performs a nonlinear mapping 
between the mossy fiber inputs and the Purkinje cells’ outputs. This mapping is 
depicted in Figure 3. The granule cell layer is essentially an association layer that 
generates a sparse and extended representation of the mossy fiber inputs. The 
synaptic connections between the parallel fibers and the dendrites of the Purkinje 
cells form an array of modifiable synaptic weights of the computing system. The 
Purkinje cell array subsequently forms the knowledge base of the cerebellum, and 
generates the output of the memory system by integrating its input synaptic  
connections. 

 

Fig. 3. Schematic Diagram of the Cerebellum. Adapted from [29]. 

2.2   Mechanisms of Learning in the Cerebellum 

The cerebellum functions primarily as a movement regulator, and although it is 
not essential for motor control, it is crucial for precise, rapid and smooth coordina-
tion of movements. It achieves its role in influencing the motor system coordina-
tion by evaluating the disparities between intention and action and subsequently 
adjusting the operation of the motor centers to affect and regulate the particular 
movement currently progressing. Neuroscience has established that the cerebellum 
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serves its functions by performing an associative mapping from the input sensory 
afferent and cerebral efferent signals to the output of the cerebellum, which is 
subsequently transmitted back to the cerebral cortex and spinal cords through the 
thalamus [29–33]. This physiological process of constructing an associative pat-
tern map constitutes the underlying neuronal mechanism of learning in the cere-
bellum. The fact that the cerebellum is provided with extensive information about 
the goals, commands and feedback signals associated with a particular movement, 
signifies that the cerebellum adopts an error-correction-driven supervised learning 
paradigm. This also implies that learning in the cerebellum requires extended trials 
with repeated exposures to similar sequence of movements in order to achieve a 
finely calibrated mapping with high fidelity to error corrections between the in-
tended and actual execution of motor movements. 

The cerebellum constitutes part of the human procedural memory system for hab-
its and skills, which is subjected to continuous adaptation throughout the life span of 
an individual. In the cerebellum, the cerebellar learning mechanism is facilitated by 
the modifiable synaptic transmissions (cerebellar synaptic plasticity) and synaptic 
re-organization (cerebellar structural plasticity) of its neuronal connections. 

Research into the physiology of the cerebellum have sufficiently demonstrated 
that the Long Term Depression (LTD) of the likelihood of the Purkinje cell firing 
action potentials in response to synaptic inputs from the parallel fibers by altering 
the chemical properties of the neuro-receptors, is the underlying cellular mecha-
nism responsible for cerebellar learning [17,27,30,33–35]. The parallel fiber  
inputs to the Purkinje cells provide large vectors of sensory information, transmit-
ting a diverse array of signals. The climbing fibers, meanwhile, function as train-
ing signals, which teach the Purkinje cells to respond to specific patterns, by  
adjusting the synaptic weights of their parallel fiber synapses. The climbing fibers 
alter cerebellar output by selectively modulating the synaptic effect of the parallel 
fiber inputs to the Purkinje cells through the mechanisms of LTD. The effect of 
the LTD can vary from minutes to hours, depending on the degree of depolariza-
tion and the quantity of calcium produced by the climbing fibers in the Purkinje 
cell dendrites [17]. 

However, clinical evidences suggest that synaptic depression may not be the 
sole mechanism underlying learning in the cerebellum [33]. In particular, the cel-
lular mechanism of LTD may not be adequate for forming permanent, long term 
memories of motor programs. Some studies provide the evidences of Long Term 
Potentiation (LTP) in addition to LTD of the cerebellar synapses [36–38]. Yet 
other studies have shown that cerebellar learning also involves the alteration of the 
morphology of the cerebellar cortex. Cerebellar structural plasticity studies con-
ducted by Greenough and his colleagues have demonstrated that complex motor 
skill learning actually leads to an increase in the number of synapses within the 
cerebellar cortex [39–42].  

In such studies, rats were given acrobatic training by challenging them to ac-
quire complex motor skills necessary to traverse a series of obstacles. It is discov-
ered that rats with such training developed an increased density of the parallel 
fibers to Purkinje cells synapses per unit volume. The increased synaptic density 
was accomplished by increased dendritic aborization and increased dendritic spine 
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densities along the Purkinje cell’s spiny branchlets [40]. Several conclusions can 
be derived from such observations: (1) that cerebellar learning leads to an endur-
ing functional and structural adaptation of the cerebellar cortex; and (2) acquiring 
experiences can alter the neuronal connectionist structure of the cerebellum. Such 
experience-driven plasticity may constitute part of the neurobiological substrates 
underlying the formation of long term procedural memory at the cerebellum. 

The experience-driven cerebellar structural plasticity phenomenon suggests that 
the cerebellum organizes its learned knowledge in an adaptive manner, where 
repeated training (exposures to a particular input-output mapping association tu-
ple) yields an increase in the synaptic connections as well as finer calibrations in 
the neural circuitry of the Purkinje cells. This results in the biological formation of 
a more precise knowledge representation scheme. 
 

 

Fig. 4. Schematic Diagram of the CMAC Neural Network. Adapted from [29]. 

3   The PSECMAC: A Brain-Inspired Multi-resolution 
Cerebellar Learning Memory Model 

The Cerebellar Model Arithmetic (or Articulation) Controller (CMAC) neural 
network is a well-established computational model of the human cerebellum [43, 
44]. The schematic of the working mechanisms of the CMAC network is depicted 
in Figure 4. From the neurophysiological perspective, the CMAC structure is a 
synthetic model of the cerebellum and employs error correction signals to drive 
learning and knowledge acquisition to emulate the learning mechanism and func-
tion approximating capabilities of its biological counterpart. In essence, CMAC 
functions as a static associative memory that facilitates local generalization and 
epitomizes the nonlinear mapping between the mossy fiber inputs and the Purkinje 
cell outputs. The computing (memory) cells of the CMAC model are analogous to  
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the Purkinje cells in the human cerebellum and the grid-like organization of these 
computing cells is inspired by the anatomy of the biological interconnections of 
the Purkinje cells and the parallel fibers, which originate from the granule cell 
layer and are the signal paths for the information projecting into the cerebellum 
from other functional brain parts. 

From an engineering point of view, CMAC is an associative memory based 
neural network that performs mapping of multi-dimensional input-output data 
tuples. The CMAC memory can be visualized as a hypercube array of storage 
cells. These cells are employed to store sets of weight values, which constitute the 
knowledge base of the CMAC network. The elements in the input vector to the 
CMAC network are used as indices to activate a particular set of storage cells, and 
the aggregation of the stored values in these activated cells forms the computed 
output of the CMAC model. In the CMAC network, the computing cells are or-
ganized as a multi-dimensional memory array, and the resolution (receptive field) 
of these cells are defined through an even quantization of the input space along 
each of the input dimensions. Each of the computing cells thus covers a region of 
similar size in the input surface.  
 

 

Fig. 5. An example of 2D CMAC memory cells 

Figure 5 illustrates a two-dimensional input CMAC network with 64 quantized 
memory cells, which is employed to store the associative mapping for 256 (16 S1 
by 16 S2) input training patterns. In this example, both input dimension is quan-
tized into 8 segments, and each two-dimensional input vector to the CMAC  
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network activates a region of four neighboring memory cells. There are two im-
mediate consequences following this rigid CMAC memory allocation scheme. 
Firstly, the resolution of the CMAC network output is solely dependent on the size 
of the network; that is, the larger the network size, the finer is the output resolu-
tion. Secondly, the resolution of the CMAC output remains constant over the 
entire memory surface of the CMAC network, regardless of the variability in the 
complexity and information content of the training data used to construct the out-
put responses. 

However, in many real-life skill acquisition episodes, behavioral proficiency is 
driven by the learner’s sensitivity towards a selective group of salient stimuli, 
which constitute only a relatively small proportion of the entire set of input sen-
sory cues. Depending on the underlying dynamics and characteristics of the skill 
to be learned, some regions of the stimuli feature space will contain more skill-
related information than the rest. Furthermore, with repeated exposures to the 
learning phenomena, an effective skill-acquisition mechanism is expected to  
develop a higher fidelity towards frequently encountered sequences. Thus, by 
drawing inspirations from the notion of experience-driven cerebellar structural 
plasticity, as well as the honing effects of repeated training to the development of 
cognitive skills, a cerebellum-inspired computational-model is proposed to syn-
thesize dynamic decision making in complex and ill-defined problems. The pro-
posed architecture, named Pseudo Self-Evolving CMAC (PSECMAC), employs 
an adaptive resolution scheme for knowledge representation via a variable quanti-
zation of the input training vectors. The proposed PSECMAC network enhances 
the knowledge-acquisition capability of the basic CMAC by utilizing an experi-
ence-driven memory management scheme, which subsequently produces a finer 
output resolution in the significant regions of the stimuli feature space. 

3.1   PSECMAC Network Architecture 

Neurophysiological studies have established that the precise wiring of the adult 
human brain is not fully developed at birth [17]. Instead, there are two overlapping 
stages in the development of the human’s central nervous system. The first stage 
of this process encompasses the formation of the basic architecture of the nervous 
system, in which coarse connection pattern emerges as a result of the genesis of 
the brain cells during prenatal development. Subsequently, in the second stage, the 
initial architecture is refined and extraneous synaptic connections are pruned 
throughout an individual’s life-span by repeated exposures to various activity-
dependent experiences. Such experience-driven plasticity is also observed in the 
cerebellum (refer to Section 2), suggesting that it may constitute as one of the 
neurobiological substrates underlying the formation of the human procedural 
memory system. The cerebellum organizes its learned knowledge through an 
adaptive and non-trivial mechanism, where repeated training (exposures to par-
ticular input-output association tuples) yields a higher fidelity in the associative 
mapping between the input stimuli and the output actuations, thus resulting in a 
more precise behavioral response. These observed cerebellar learning principles 
are dutifully incorporated into the proposed PSECMAC network in order to con-
struct a cerebellar-based learning memory model. 
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Figure 6 illustrates the fundamental architectural distinction in the organization 
of the memory structure of the proposed PSECMAC model in comparison with 
the basic CMAC model. While the basic CMAC memory cell structure is evenly 
distributed over the entire associative mapping space, the computing cells in the 
PSECMAC network are selectively allocated to achieve an efficient overall fea-
ture space representation. This selective allocation scheme is facilitated via the 
identification of salient stimuli features that are significant for performance from 
the input training tuples, resulting in an adaptively granularized associative map-
ping function of the PSECMAC network. 

 

    

               (a) 2D CMAC Memory Cells                        (b) 2D PSECMAC Memory Cells 

Fig. 6. Comparison of CMAC and PSECMAC Memory Surface for 2-inputs problem 

The initial step towards the creation of an adaptive-resolution associative map-
ping of the PSECMAC network is to identify key areas of the stimuli feature space 
that contains more information pertaining to the task as compared to the rest, and 
subsequently assigning a finer granularity (i.e. more memory cells) to these sig-
nificant regions of the feature space. Analogical to the repeated exposures of 
learning episodes and skill-training, these key areas correspond to the densely 
populated information regions in which a large amount of data points existed  
within close proximity. Figure 7 depicts a 2D illustration of this principle of den-
sity-based adaptive computing granularity in the proposed PSECMAC network. 

In PSECMAC, memory assignment and adaptive quantization are performed on 
a per-dimension basis and consisted of several steps: (1) computing the density 
clusters; (2) performing memory cells allocation based on the computed density 
profile; and (3) determining the quantization points within each of the allocated 
memory cells. The Pseudo Self Evolving Cerebellar (PSEC) clustering algorithm 
[45] is employed to compute the centers of the density clusters in the input train-
ing space. The PSEC algorithm is a density-based clustering algorithm which 
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Fig. 7. An example of 2D PSECMAC Memory Surface 

synergizes the merits of the incremental learning procedure of the Learning Vector 
Quantization (LVQ) [46] technique with the effectiveness of the density-based 
partitioning method of the DBSCAN algorithm [47]. PSEC is inspired by the 
biological development of the human’s central nervous system, whereby neural 
cell death plays an integral part in the refinement process of the brain’s neuronal 
organization [45]. 

The operations of the PSEC algorithm are performed individually for each 
component dimension of a given training data set. Significant data clusters sup-
porting the inherent organization of the data set are identified by the PSEC algo-
rithm through an analysis of the density distribution of the data points along each 
of the component dimensions. The PSEC algorithm is briefly outlined as follows: 
 

Step 1  Initialize the density threshold β prior the search for the significant 
data clusters (structures) along an arbitrary dimension d of the data set. 

Step 2  Construct a linear cerebellar structure with m regularly spaced neu-
rons that span the input space of dimension d. This step models the 
first-stage development process of the human central nervous system. 

Step 3  PSEC performs structural learning by executing a one-pass pseudo 
weight learning process to obtain a density distribution of the train-
ing data along dimension d. 

Step 4  The linear cerebellar structure is evolved by identifying the surviv-
ing neurons with high tropic factors (using the density threshold β) 
whose pseudo weights (aggregated densities) form prominent con-
vex density peaks in the computed density distribution of Step 3.  
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 The remaining neurons are pruned. This is analogous to the activity-
dependent refinement process of the human brain’s neuronal organi-
zation and synaptic connectivity. 

Step 5  The surviving neurons subsequently provide the initial weights for 
further refinements by the LVQ algorithm to identify the eventual 
positions of the centers of the density-induced data clusters along 
dimension d. 

 

Figure 8 illustrates the end result of the operations of the PSEC clustering algo-
rithm. In essence, PSEC computes a set of density-induced clusters, whose cen-
ters denote the highest density point in each of the corresponding clusters. The 
PSEC clustering algorithm autonomously assigns the cluster centers to the equi-
librium density points such that the density of the left-sided region of a cluster 
center is equivalent to that of its right sided counterpart. The computed data 
clusters are arbitrarily-shaped, and the boundary between any two neighboring 
clusters is conveniently assumed to be at the bisection of the two respective 
cluster centers. 

 

Fig. 8. A sample clustering output of the PSEC clustering technique 

In the PSECMAC model, the number of memory cells allocated to each of the 
clusters is proportional to the normalized density of the corresponding cluster 
center in relation to the overall cluster densities. Let the total number of memory 
cells per input dimension be M, and the memory allocation process of PSECMAC 
is formulated as 

i
i

jj S

P
M M

P
∈

⎢ ⎥
⎢ ⎥= ×
⎢ ⎥⎣ ⎦∑

 (1)

where Mi is the total number of memory cells allocated for the ith cluster, M is the 
total number of memory cells available per input dimension, Pi denotes the density 
of the cluster center of the ith cluster, and S refers to the set of clusters in the entire 
input feature’s space. 



512 S.D. Teddy et al. 

In order to obtain a gradually-refined granularity for areas of the input space 
with high densities, a non-linear assignment scheme is introduced to the memory 
cell allocation process of the PSECMAC network by varying the quantization step 
sizes of the memory cells inside the clusters. In PSECMAC, the memory cells 
allocated to an arbitrary cluster is equally distributed to the left (left subregion) 
and right (right subregion) side of the corresponding cluster center. In each of the 
subregions, the quantization point of each of the memory cells is logarithmically 
assigned with respect to the cluster center. The result of this computation is illus-
trated in Figure 9, which depicts the variable quantized memory cells inside the 
region of an arbitrary cluster. The center of each density-induced cluster consti-
tutes the finest granularity within the region of the cluster. Consequently, the  
further is an allocated memory cell from its cluster center, the coarser is the granu-
larity of its quantization step size. The degree of non-linear progression in the 
granularity of the quantization step sizes of the memory cells in a cluster is gov-
erned by a parameter μ. A logarithmic quantization (commonly referred to as the 
μ-law quantization technique [48]) is subsequently employed to vary the distribu-
tion of the memory cells in the cluster. 

 

Fig. 9. Variable memory cell distribution in a cluster 

Assuming that an arbitrary cluster i as depicted in Figure 9 is assigned M
ψ
ψnumber 

of memory cells by the PSECMAC memory allocation process, the quantization 
point of the jψψψmemory cell (denoted as Q

ψ
ψ) in the cluster is computed as: 
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( 0.5)j ipt l j stepsize= + − ⋅  (3)
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where j is the index of an allocated memory cell in an arbitrary cluster i, cpi is the 
center of cluster i, li and ri denote the left and right borders of cluster i respec-
tively, Mi is the number of memory cells allocated to cluster i, μ denotes the de-
gree of nonlinear progression, ptj is the pseudo quantization point of the 
jth

ψmemory cell in cluster i, and Qj the resultant μ-law based PSECMAC quantiza-
tion point of the jth memory cell in cluster i. 

The computed quantization decision points of each input dimension of the 
training data set subsequently form the memory axes of the PSECMAC network to 
define its overall computing structure. The intersections of these memory axes at 
the input space denote the computing cells of the proposed PSECMAC network 
(see Figure 7). This adaptively computed organization of the memory cells repre-
sents the eventual structure of the PSECMAC model employed to learn the char-
acteristics of the training data set. The following subsection describes how this 
computing structure of the PSECMAC network is utilized as a memory store for 
knowledge acquisition. 
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3.2   PSECMAC Working Principles 

The proposed PSECMAC model employs a Weighted Gaussian Neighborhood 
Output (WGNO) computation process, where a set of neighborhood-bounded 
computing cells is simultaneously activated, to derive an output response to each 
set of input stimulus. In this computation process, each of the neighborhood cells 
has a varied degree of activation that is inversely proportional to the distance from 
the input stimuli. The purpose of implementing this neighborhood retrieval 
scheme in the PSECMAC model is to minimize the effects of quantization errors 
on the computed output of the network. In addition, the WGNO process also in-
troduces a topological generalization capability into the proposed PSECMAC 
model. Given an input stimulus X = [x1, x2, ...xd] to the PSECMAC network, the 
computed output of the network is derived as follows: 

Step 1: Determine the Region of Activation 
The PSECMAC network employs a neighborhood-based output retrieval process 
in which the computed output of the network corresponding to an input stimulus is 
derived from a weighted combination of the memory values of the neighborhood 
cells in the vicinity of the input stimuli as observed in the multi-dimensional fea-
ture space. The size of this neighborhood is defined by a neighborhood constant N, 
which determines the relative size of the neighborhood with respect to the overall 
feature space. To simplify the network computations, the neighborhood boundary 
is defined on a per dimension basis. For an input stimulus X, its activation 
neighborhood is defined as: 

0.5i i il x N range= − ⋅ ⋅  (9)

0.5i i ir x N range= + ⋅ ⋅  (10)

{ }1,2, ,i d∈ …  (11)

where i is the dimension index, d is the number of input dimensions, N denotes the 
neighborhood constant, rangei is the input range for the ith dimension, and li and ri are 
the left and right boundaries of the neighborhood in the ith dimension corresponding 
to stimulus X. Consequently, the memory axes encapsulated inside the defined 
boundaries are activated, and the memory cells denoted by their intersections contrib-
ute to the set of activated PSECMAC computing cells for the input stimuli X. 

Step 2: Compute the Gaussian weighting function 
The WGNO retrieval process of the proposed PSECMAC model is illustrated as 
Figure 10. The degree of contribution of each of the activated cells to the output of 
the PSECMAC network corresponding to the input stimuli X is inversely propor-
tional to the distance between the quantization points of the memory cells and X. 
A Gaussian weighting factor (gk) is employed to attenuate the synaptic weight 
contributed by each of the cells in the activated neighborhood with respect to the 
Euclidean distances of the computing cells to the actual point of activation X in 
the PSECMAC memory space. The Gaussian weighting function is defined as: 
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Fig. 10. An example of 2D PSECMAC Neighborhood 

( ) 2 2/ 21 kd
k kg d e γ−= −  (12)

where k denotes the index of an arbitrary activated cell, dk is the Euclidean dis-
tance between the quantization point of the cell and the input stimulus X, gk is the 
Gaussian weighting factor for the kth activated cell, and γ refers to the Gaussian 
width constant. 

Step 3: Retrieve the PSECMAC output 
The output of the proposed PSECMAC model is computed as a weighted linear 
combination of the memory contents of the activated cells: 

( )k kk K
X

kk K

g W
Z

g
∈

∈

⋅
= ∑

∑
 (13)

where K denotes the set of activated neighborhood cells, Wk denotes the weight 
value(s) of the kth activated cell, gk is the Gaussian weighting factor for the kth 
activated cell, and ZX is the output of PSECMAC corresponding to the input 
stimulus X. 

3.3   PSECMAC Learning Paradigm 

The proposed PSECMAC network employs a two-phase training algorithm, 
namely: structural learning and memory learning. The objective of the first (struc-
tural learning) phase is to construct the underlying memory structure of the 
PSECMAC network using the adaptive memory allocation scheme as described in 
Section 3.1. The second (memory learning) phase is the network training phase in 
which patterns of association between the input and the output of the training data 
tuple are incrementally mapped into the network structure. The objective of the  
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memory learning phase is to adaptively tune the PSECMAC network to associa-
tively respond to the presented input stimuli with increasing accuracy. In order to 
emulate the neighborhood learning phenomenon observed in the human cerebel-
lum [17, 28, 49], the proposed PSECMAC network adopts a modified form of the 
Widrow-Hoff learning rule [50] to implement a Weighted Gaussian Neighborhood 
Update (WGNU) process. 

Under this learning scheme, PSECMAC does not only update the winning neu-
ron to an input-output association pattern of the input stimulus. Instead, a 
neighborhood of cells centered at the input stimulus is activated, and the degree of 
learning or adaptation for each of the activated cell varies with respect to the dis-
tance between that cell and the input stimulus. Essentially, WGNU combines the 
Widrow-Hoff training algorithm with a Gaussian weighting function, which is 
defined as in Equation (12). The objective of this neighborhood update scheme is 
to distribute the effect of learning so as to increase the fidelity and the generaliza-
tion capability of the PSECMAC network, as well as to improve the network train-
ing time. WGNU also partially epitomizes the human learning behavior, where it 
is observed that the learning of an associated task will enhance the subsequent 
learning process of a related task. 

The PSECMAC memory learning process is mathematically described by the 
following equations: 

( )
X j
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X j
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where I is the training iteration number, Xj denotes the jth input vector (stimulus) 
to the network, KXj is the set of activated computing cells corresponding to the 
input Xj, gk is the Gaussian weighting factor of the kth activated memory (comput-
ing) cell, ZXj is the output of the network to the input Xj, DXj is the expected output 
of the network in response to the input Xj, Wk denotes the content of the kth acti-
vated memory cell, andα is the learning constant. 

The PSECMAC memory learning phase commences with the computation of 
the network output corresponding to the input stimuli Xj. A learning error is com-
puted based on the derived PSECMAC output and the desired response to Xj. This 
error is subsequently distributed to all the activated computing (memory) cells 
based on the computed Gaussian weighting functions of these cells. The respective 
local errors, adjusted by the learning constant, are then used to update the memory 
contents of each of the activated cells. In addition, a theoretical proof of WGNU 
update convergence has been undertaken and is reported in [51].  
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4   Diabetes as a Disease 

Diabetes Mellitus, commonly known as diabetes, is a chronic disease where the 
body is unable to properly down-regulate glucose concentrations in the blood, 
resulting in elevated blood glucose (hyperglycemia), passage of excessive glu-
cose-concentrated urine (osmotic diuresis) and thirst. Correspondingly, the treat-
ment of diabetes is focused on glucose lowering therapy using oral hypoglycemic 
agents and insulin. Sub-optimal therapy results in persistent hyperglycemia while 
excessive treatment may cause hypoglycemia (reduced blood glucose).  

Chronic hyperglycemia causes damage to the eyes, kidneys, nerves, heart and 
blood vessels [52]; and there is unequivocal evidence that intensive glucose con-
trol further reduces risk of end-organ damage compared to conventional therapy 
[53, 54] as well as provides a legacy effect [55]. Yet intensive glucose lowering 
therapy may result in severe hypoglycemia that deprives the body of energy and 
causes confusion resulting in loss of consciousness or death [56].  

The medical profession has classified diabetes into two main subtypes based on 
their pathogenesis – (1) Type-1 diabetes, also known as juvenile or insulin-
dependent diabetes mellitus (IDDM) occurs as a result of death or destruction of 
pancreatic beta-cells [57], while (2) Type 2 diabetes, also known as adult-onset or 
non-insulin-dependent diabetes mellitus (NIDDM), occurs as a result of reduced 
cellular insulin sensitivity causing initial elevated insulin levels (to compensate for 
reduced insulin sensitivity) followed by progressive beta-cell insufficiency and 
eventual relative insulin deficiency [58]. 

In recent years, there has been an urgency to address the treatment efficiency of 
diabetes, driven mainly by concerns regarding the rising social and economic cost 
of the disease. Due to its chronic nature, as well as the severity of complications 
related to the ailment, diabetes is a costly disease that exacts heavy financial bur-
den on both patients and society. As the numbers of diabetic patients increases 
worldwide [59, 60], the proportion of national health care budgets allocated for 
diabetes treatment is further expected to balloon. A report from the American 
Diabetes Association [60] listed diabetes as the fifth leading cause of death in the 
U.S. with an annual direct and indirect medical expenditure of approximately 
$132 billion.  This amount is projected to increase to $156 billion by 2010 and to 
$192 billion by 2020 for the U.S. alone. 

Successful management of diabetes requires long term maintenance of near-
normal glucose levels. To achieve this, all diabetics are required to maintain a 
disciplined dietary plan in addition to prescribed diabetic medications. The type of 
diabetic medication needed depends on the nature of the diabetic condition and the 
ability of the beta-cells to produce insulin – all type 1 diabetics will require insulin 
replacement; most type 2 diabetics early in the course of the illness will only re-
quire oral medications while type 2 diabetics of long standing duration will in-
creasingly face the need for insulin therapy.  

Insulin replacement therapy plays a critical role in the management of both 
type 1 and type 2 diabetes. The ideal insulin regimen is the physiological mim-
icry and recreation of non-diabetic insulin response to glucose in a diabetic pa-
tient; so as to regulate the blood glucose level within tight physiological limits 
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(typically 60-110 mg/dl or 4-7 mmol/l) [61]. Insulin can be administered subcu-
taneously, intravenously or through a trans-peritoneal route, and it can take the 
form of discrete insulin injections or continuous insulin delivery via an insulin 
pump. Extensive studies on the advantages, disadvantages and peripheral issues 
regarding these insulin delivery approaches have been performed and reported in 
the literature [62, 63]. 

Because of its open-looped nature, the therapeutic effect of discrete insulin in-
jections is not ideal for the treatment of diabetes. Continuous insulin infusion 
through an insulin pump, on the other hand, offers a more viable approach due to 
its controllable infusion rate [64]. The workings of such insulin pumps are algo-
rithmically driven, with a host of techniques proposed, investigated and reported 
in the literature [65,66]. Classical control methods and advanced algorithms using 
implicit knowledge or explicit models (empirical, fundamental, or graybox) of the 
diabetic patient have been studied and examined in [67–69]. These proposed 
methods all require some form of modeling of the glucose metabolic process of 
the diabetic patient before a suitable control regime can be devised. However, the 
use of classical modeling techniques (data fitting, compartmentalized differential / 
difference equations, statistical or machine learning approaches etc) [70, 71] to 
describe the dynamics of the impaired diabetic metabolism process generally re-
sults in a rigid regulatory system. These are unable to dynamically evolve and 
respond to the inter- and intra-day glucose variability [72, 73] and represent a 
critical limitation of classical control algorithms. 

From a biological perspective, insulin serves as the principal regulatory hor-
mone that ensures homeostasis of the human blood glucose level [74]. Much pro-
gress has been made in the last three decades to characterize the metabolic path-
ways that are involved in the physiological process of insulin secretion. Of all the 
pathways identified so far, the mechanism of glucose metabolism in triggering 
insulin secretion from the pancreatic β-cells has been the most extensively studied 
[75]. Blood glucose is the most effective physiological nutrient stimulus of insulin 
secretion [76]. This homeostatic function depends on the glucose uptake in the 
pancreatic β-cells and the subsequent signaling pathways that influence the rate of 
insulin secretion [77]. The pancreatic β-cells are physiologically designed to 
measure the level of glucose in the blood on a moment to-moment basis, in order 
to secrete insulin at rates that are exactly appropriate to ensure an optimal level of 
circulating glucose in the blood [75]. When the blood glucose level increases, 
insulin secretion is enhanced with a characteristic dependency. Therefore, the 
human body is naturally endowed with a vigorous and robust regulatory mediation 
to the secretion of insulin. 

The central nervous system participates in maintaining energy equilibrium and 
an important function of the CNS is to ensure a steady supply of energy substrates. 
To accomplish this task, widely divergent afferent signals are integrated within the 
brain and transduced into signals that facilitate homeostatic adjustments of food 
intake and energy expenditure. The various afferent inputs that the brain employs 
to dynamically adjust food intake and energy metabolism can be broadly catego-
rized into two subgroups: those that communicate information pertaining to body 
energy stores and signals that are generated in response to nutrient ingestion.  
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Fig. 11. Model of energy and glucose homeostasis in human. Adapted from [79]. 

Emerging evidence suggest that glucose metabolism throughout the body is co-
ordinated by the brain and mediated by insulin [78]. This is supported by the find-
ing of glucokinase receptors, the established glucose sensor of the pancreatic  
β-cells, in the central nervous system (CNS) [79]. There is common consensus that 
the liver plays a central role in the human glucose metabolism process by acting as 
a glucose buffer; that is, extracting glucose from the bloodstream in times of 
plenty and synthesizing glucose when needed by recognizing the different bodily 
energy states through the detection of changes in the blood insulin concentration 
[80]. Hitherto, insulin is known to target the liver directly. However, precise ex-
periments have subsequently demonstrated that insulin, via its action on the hypo-
thalamus (a sub-cortical brain structure central to the autonomic control of the 
human endocrine system), exerts a higher level of supervisory control on glucose 
production by the liver [81]. This observation suggests that insulin can in fact 
modulate liver glucose production through an unknown signaling pathway via the 
CNS [82, 83]. In addition, bio-physiological studies have established the presence 
of an inhibitory physiological response to food intake when the insulin hormone is 
directly administered to the CNS, particularly in the hypothalamus region [84, 85]. 
Hence, insulin appears to be required by the CNS to regulate food intake, body 
weight and the homeostasis of physiological processes [86]. These intertwined and 
complex relationships are depicted in Figure 11. 

While many of the mechanisms and inter-dependent relationships between in-
sulin, the central nervous system and the overall metabolic process remain under 
extensive research and has yet to be scientifically established, the facts presented 
above have sufficiently demonstrated that the human insulin regulatory mecha-
nism is a complex dynamic decision process in a rapidly changing and uncertain 
environment, in which each of the participants influence one another in a highly 
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complex and nonlinear manner. The purpose of this chapter is therefore to support 
the use of the PSECMAC network, which is a cerebellar-inspired adaptive learn-
ing memory model, to dynamically model the insulin profile of the glucose meta-
bolic process of a healthy person, so as to determine the insulin dynamics required 
to achieve homeostasis of the glucose metabolic process when perturbed by food 
intakes. The objective is to subsequently employ this PSECMAC-based insulin 
model as a reference to regulate insulin infusion by means of an insulin pump in 
order to achieve long-term near normoglycemia in patients with type I diabetes 
and those with type 2 diabetes and beta-cell deficiency, while avoiding hypogly-
cemia at all times. 

5   Glucose Metabolisms: A Study of the Insulin Dynamics for 
Normoglycemia 

The first step into constructing a model of the human glucose metabolic process is 
to determine the patient profile to be modeled. Due to the lack of real-life patient 
data and the logistical difficulties and ethical issues involving the collection of 
such data, a well-known web-based simulator known as GlucoSim [87] is em-
ployed to simulate a person subject to generate the blood glucose data that is 
needed for the construction of the patient model. The objective of the study is to 
apply PSECMAC, a neurophysiologically-inspired computational model of the 
human cerebellum, to the modeling of the glucose metabolism of a healthy sub-
ject. For this purpose, a human profile (Subject A) for the simulated healthy sub-
ject is created and outlined in Table 1. 

Table 1. The profile of the simulated healthy Subject A 

Attribute Name Attribute Value 
Sex Male 
Age 40 years old 
Race Asian 
Weight 67 kg (147.71 lbs) 
Height 1.70 m (5ft 7in) 
BMI 23 (Recommended for Asian) 
Lifestyle Typical office worker with moderate physical activities such as 

walking briskly, leisure cycling and swimming. 

 
 
The simulated healthy person, Subject A, is a typical middle-aged Asian male. 

His body mass index (BMI) is at 23.0, within the recommended range for Asian. 
Based on the person profile of Subject A, his recommended daily allowance 
(RDA) of carbohydrate intake from meals is computed using an applet from the 
website of the Health Promotion Board of Singapore [88]. According to his sex, 
age, weight and lifestyle, the recommended daily carbohydrate intake for subject 
A is approximately 346.9g per day. For the purpose of the study, a total of 100 
days of glucose metabolic data for Subject A are to be collected. 
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GlucoSim requires 10 different inputs to be generated, which consists of the 
body weight, the simulation period, and both the time and carbohydrate content of 
each of the assumed daily four meals, namely: breakfast, lunch, afternoon snack, 
and dinner respectively. With the person profile of Subject A and the carbohydrate 
contents of his typical meals in compliance with his calculated RDA, 100 days of 
glucose data are to be generated from the simulator. The carbohydrate contents 
and the timings of the daily meals varied from day-to-day during the data collec-
tion phase. To account for the inter and intra-day variability of his eating habits 
and the contents of the meals he has, as well as the possible fluctuations of his 
body weight within the simulated period of 100 days, the computation listed in 
Table 2 were performed to generate 100 different sets of inputs, one for each day 
of the simulated period, to be used with the simulator to generate the glucose data. 
This ensures that the proposed PSECMAC is not being trained on a cyclical data 
set, but employed to discover the inherent relationships between food intakes and 
the glucose metabolic process of a healthy person. 

Figure 12 illustrates a sample output from GlucoSim for Subject A. This output 
consists of six elements: blood glucose, blood insulin, intestinal glucose absorp-
tion rate, stomach glucose, total glucose uptake rate and liver glucose production 
rate of Subject A respectively over a simulated time period of 24 hours. The peaks 
in the stomach glucose subplot of Figure 12 coincide with the timings of the as-
sumed daily four meals (i.e. breakfast, lunch, afternoon snack and dinner) while 
those peaks in the intestinal glucose absorption rate subplot reflect a delay effect 
(response) of food intake on the blood glucose level of Subject A. The subplots of 
blood glucose and blood insulin illustrate the insulin-glucose regulatory mecha-
nism in a healthy person such as Subject A and depict the dynamics of the meta-
bolic process when subjected to disturbances such as food intake. 

Since the glucose metabolic process depends on its own current (and internal) 
states as well as exogenous inputs (or disturbances) such as food intake, it is hy-
pothesized that the blood insulin concentration level at any given time is a non-
linear function of prior food intakes and the historical traces of the insulin and 
blood glucose levels. To properly account for the effect of prior food ingestion to 
the blood insulin level, a historical window of six hours was adopted. To resolve 
the variability issue in the number of meals (and hence number of inputs) taken 
within the previous 6 hours, a soft-windowing strategy is adopted to partition the 
six hours historical windowing and weighting function into three conceptual seg-
ments, namely: Recent Window (i.e. previous 1 hour), Intermediate Past Window 
(i.e. previous 1 to 3 hour) and Long Ago Window (i.e. previous 3 to 6 hour), result-
ing in only three food history inputs. The names of the segments are chosen to 
intuitively represent the human conceptual understanding and perception of time 
based on these windows, three weighting functions are introduced to compute the 
carbohydrate content of meal(s) taken within the recent, intermediate past or long 
ago periods. Figure 13 depicts the weighting function for each of the segmented 
windows. 
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Three computing networks were constructed to model the dynamic blood insu-
lin profile: a PSECMAC network of size 8 per dimension and two CMAC net-
works of size 8 and 12 per dimension respectively. The 100 days of collected 
metabolism data was then used in the training and testing of the PSECMAC and 
the two CMAC networks.  
 

 

Fig. 12. Sample glucose metabolism data output from the GlucoSim simulator. 

 

Fig. 13. Soft-windowing weighting functions to compute the carbohydrate content of 
meal(s) in the segmented windows of the 6-hours food history 
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Table 3. The Parameter Settings for the trained Networks 

Parameter Name Notation Parameter Value 
Neighborhood constant N 0.1 
Width of Gaussian weighting function γ 0.5 
Learning constant α 0.1 
Number of training epoch Epmax 1000 

 
 
 

 

(a). Recall performance 

 

(b). Generalization performance 

Fig. 14. 3-days modeling performances of the PSECMAC network in modeling the insulin 
profile of a healthy person 

In order to obtain an objective comparison on the performances of the three mod-
els, all of the networks are trained and tested using the same parameter settings 
and the weighted Gaussian update and retrieval mechanisms (i.e. WGNO and 
WGNU respectively). The parameters of the networks are outlined in Table 3. 
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Figure 14 depicts a 3-days snapshot of the recall and generalization accuracy of 
the proposed PSECMAC network in comparison to its CMAC counterpart (Figure 
15) on modeling the metabolic insulin profile. Each of the networks has 8 memory 
cells per dimension. To quantify the performance quality of the networks, two 
performance indicators are used: the root mean-squared error (RMSE) and the 
Pearson correlation coefficient between the desired and the computed metabolic 
insulin profile. The modeling accuracy of the PSECMAC network is evaluated 
against those of the basic CMAC and the results are tabulated in Table 4. 

From the plots of Figure 14 and Figure 15, as well as the results tabulated in 
Table 4, it can be observed that there are slight performance degradations as the 
evaluation emphasis shifted from recall to generalization in the modeling perform-
ances of both the PSECMAC and CMAC networks. This is a common phenome-
non since generally; computational models tend to have poorer modeling and 
prediction performance to data samples that have not been previously encountered 
in the training phase. However, it is clearly demonstrated that the generalization 
capability of the PSECMAC network surpasses that of the basic CMAC networks 
in both RMSE as well as the Pearson correlation coefficient. In fact, the 
PSECMAC network manages to obtain a rather good fit to the actual blood insulin 
concentration level required, as indicated by a high correlation of 97.69% and a 
relatively low RMSE of 10.3349 mU/ml of blood insulin concentration. Moreover, 
it is observed that there is degradation in the performance of the basic CMAC 
network as the network size grows from 8 to 12. This is due to the fact that in the 
basic CMAC network, memory partitioning is performed without taking into con-
sideration the inherent structure and characteristics of the problem domain. These 
results have sufficiently demonstrated the ability of the PSECMAC network to 
efficiently capture the dynamics of the glucose metabolism process of a healthy 
person and are subsequently able to accurately decide on the appropriate level of 
insulin concentration based on the acquired knowledge. Specifically, in contrast to 
the basic CMAC, the proposed PSECMAC network provides a more meaningful 
and efficient method of managing the limited memory resource to model and 
capture the characteristics of a given problem domain. 

Table 4. Simulation results of the modeling of the insulin response of the healthy glucose 
metabolic process 

Architec-
ture 

Evaluation Mode 
Memory Size 

(per dimension) 
RMSE 

(mU/ml) 
Pearson Correlation 

PSECMAC Recall 8 4.8039 0.9942 
 Generalization 8 10.3349 0.9769 
CMAC Recall 8 3.7044 0.9965 
 Generalization 8 16.4373 0.9405 
 Recall 12 2.5443 0.9983 
 Generalization 12 16.9316 0.9383 
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(a). Recall performance 

 

(b). Generalization performance 

Fig. 15. 3-days modeling performance of the PSECMAC network in modeling the insulin 
profile of a healthy person 

6   Conclusions 

This chapter proposes a novel brain-inspired, cerebellar-based computational 
model named PSECMAC to functionally model the autonomous decision making 
process in a complex, dynamic and uncertain environment. Dynamic decision 
making processes are characterized by multiple, interdependent and real-time 
decisions, which occur in an environment that changes independently as a function 
of a sequence of actions. Research has established that such a decision making 
process appears to be a cognitive skill that can be developed through training and 
repeated exposures to a series of decision episodes. 
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The human procedural memory system is a facet of the brain’s information 
computing fabric, and exhibits the capacity for knowledge acquisition and infor-
mation retention. An important component of the human procedural memory sys-
tem is the cerebellum, which represents a learning memory system for habits, 
skills and procedures. It has characteristics of rapid and unconscious memory 
recalls, and is responsible for many human’s subconscious behavioral responses. 
This provides the motivation to use PSECMAC, a cerebellar-based learning mem-
ory model, as a computational tool for autonomous decision making to dynamic, 
complex and ill-defined problems. 

Inspired by the cerebellar learning mechanisms established through neuro-
physiological studies, the proposed PSECMAC learning memory model employs 
an experience-driven memory management scheme, which has been demonstrated 
to be more efficient in capturing the inherent characteristics of the problem do-
main for effective decision making. The PSECMAC network employs a density-
based memory cell allocation procedure, which subsequently translates to finer 
and more precise representations of frequently encountered features of the prob-
lem being modeled. Such an allocation procedure in turn results in a more accurate 
representation of the important knowledge related to the problem domain. The 
performance of the proposed PSECMAC network is subsequently evaluated by 
employing it to model the dynamics of the metabolic insulin regulation mecha-
nism of a healthy person when perturbed by food intakes. The regulation of the 
human glucose metabolic process via insulin control can be perceived as an 
autonomous decision making process, in which the body dynamically decides the 
appropriate amount of insulin to secrete in response to the food intakes. Simula-
tion results have sufficiently demonstrated the effectiveness of the proposed 
PSECMAC model in capturing the complex interacting relationships between the 
blood glucose level, the food intake and the required blood insulin concentration 
for metabolic homeostasis. The modeling capability of the PSECMAC network is 
subsequently benchmarked against those of the basic CMAC and significant im-
provement is noted. 

As part of the future work, the PSECMAC based insulin model will be used as 
a reference model to develop an intelligent control regime for an algorithmic-
driven insulin pump for the treatment of Type I diabetes. These various research 
attempts are currently actively underway at the Centre of Computational Intelli-
gence (C2i) [89] located at the School of Computer Engineering in Nanyang 
Technological University, Singapore. The C2i lab undertakes intense research in 
the study and development of advanced brain-inspired learning memory architec-
tures [90–92] for the modeling of complex, dynamic and non-linear systems. 
These techniques have been successfully applied to numerous novel applications 
such as automated driving [93], signature forgery detection [94], gear control for 
the continuous variable transmission (CVT) system in an automobile [95], bank 
failure classification and early-warning system (EWS) [96], as well as in the bio-
medical engineering domain [97-98]. 
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