
Rule-based Power-balanced VLIW Instruction
Scheduling with Uncertainty

Shu Xiao, Edmund M-K. Lai and A.B. Premkumar

School of Computer Engineering, Nanyang Technological University
Singapore 639798

shu x@pmail.ntu.edu.sg, asmklai@ntu.edu.sg, asannamalai@ntu.edu.sg

Abstract. Power-balanced instruction scheduling for Very Long Instruc-
tion Word (VLIW) processors is an optimization problem which requires
a good instruction-level power model for the target processor. Conven-
tionally, these power models are deterministic. However, in reality, there
will always be some degree of imprecision involved. For power critical
applications, it is desirable to find an optimal schedule which makes sure
that the effects of these uncertainties could be minimized. The scheduling
algorithm has to be computationally efficient in order to be practical for
use in compilers. In this paper, we propose a rule based genetic algorithm
to efficiently solve the optimization problem of power-balanced VLIW in-
struction scheduling with uncertainties in the power consumption model.
We theoretically prove our rule-based genetic algorithm can produce as
good optimal schedules as the existing algorithms proposed for this prob-
lem. Furthermore, its computational efficiency is significantly improved.

1 Introduction

Power-balanced instruction scheduling for very long instruction word (VLIW)
processors is the task of producing a schedule of VLIW instructions so that the
power variation over the execution time of the program is minimized, while the
deadline constraints are met. Most currently instruction scheduling techniques
for this problem are based on deterministic power models [1–3]. Since these
instruction level models are estimated from empirical measurements [4,5], there
will always be some degree of imprecision or uncertainty. Furthermore, in order
to reduce the complexity of the power model, some approximation techniques
such as instruction clustering [6] have to be employed which contributes to the
imprecision involved. While these instruction scheduling techniques using the
approximate deterministic power models allow us to optimize power consumption
in the average sense, it is desirable to find an optimal schedule which ensures
that the effects of those uncertainties could be minimized for power critical
applications.

A rough programming approach has previously been proposed to solve this
problem [7–9]. This approach is shown in Fig. 1. An instruction-level power
modelling technique which applies rough set theory is used to handle the uncer-
tainties involved [7,8]. Then the power-balanced instruction scheduling problem



based on the rough set based power model is formulated as a chance-constraint
rough program [7,9]. This program was previously solved by a genetic algorithm
(GA) [9]. In order to rank the schedules produced in each generation of the ge-
netic algorithm, rough simulation is used [10]. It is a simulation process that
estimates the ranges of the objective function values for a given schedule given a
confidence level. It is very expensive computationally. Thus while this technique
is of interest academically it is not suitable for practical use.

Fig. 1. A rough programming approach proposed in [7–9].

In this paper, we propose a rule-based genetic algorithm to solve the above op-
timization problem much more efficiently. The steps involved in this new method
is summarized in Fig. 2. It ranks the generated schedules by simply comparing
the differences between the objective function values of these schedules using a
set of rules instead of rough simulation. These rules are generated by learning
the decision making process of rough simulations. This rule extraction process,
though computationally expensive since it involves rough simulation, only needs
to be performed once off-line for a particular target processor. Thus the compu-
tation time involved in the instruction scheduling phase is much reduced.

We shall review the rough power model, the chance-constraint rough program
formulation of the problem and the existing GA to solve it in Sections 2, 3
and 4 respectively. In Section 5.1, our rule-based GA is presented. We proved
mathematically that the solutions obtained by the rule-based GA are as good as
those obtained using the existing GA. The rule extraction method is discussed
in Section 5.2. Then examples are given to illustrate how the improved GA using
these rules is able to improve the computational efficiency substantially.



Fig. 2. A rule based genetic algorithm to solve the chance-constraint rough program.

2 Rough Instruction Level Power Model

Suppose a program schedule X consists of T time slots:

X =< w1, ..., wi−1, wi, ..., wT >

where wi is the long instruction word in the i -th time slot. A most common
approach to estimate the power consumed in time slot i during the execution of
X is

Pi ≈ U(0|0) +
F∑

k=1

vk
(i|i−1) (1)

Here, U(0|0) is the base power cost which is the power consumed by the execution
of an instruction word constituted entirely by no-operation (NOP) instructions.
F is the number of functional units in the target VLIW processor. the summa-
tions of vk

(i|i−1) is the additional power contributions on the F functional units
due to the change of instructions on the same functional unit in the time slot
i. The number of instruction pairs to be considered for vk

(i|i−1) in (1) could be-
come too large to be characterized, since two instructions differ either in terms
of functionality (i.e., opcode), addressing mode (immediate, register, indirect,
etc.), or data differences (either in terms of register names or immediate values).

The complexity can be reduced by instruction clustering, that is instructions
are categorized into classes, such that the instructions in a given class are char-
acterized by very similar power cost. Then a simplified model from (1) can be
obtained:

Pi ≈ U(0|0) +
C∑

k=1

rkck (2)



where the additional power consumption to U(0|0) is computed as the summa-
tions of the power due to the being executed instructions in different clusters in
the time slot i. C is the number of instruction clusters. ck is the power consump-
tion parameter representing power consumption of instructions in the cluster k.
rk represents the number of being executed instruction belong to the cluster k
in the time slot i.

However, simply by instruction clustering each ck only represents an aver-
age power consumption for the instructions in the same cluster with different
opcodes, addressing modes, operands or the preceding opcodes. In order to in-
dicate the uncertainty involved in each power consumption parameter, each ck

is expressed as a rough variable represented by ([a, b], [c, d]). [a, b] is its lower
approximation and [c, d] its upper approximation and c ≤ a ≤ b ≤ d are real
numbers [8]. This means that the values within [a, b] are sure and those within
[c, d] are possible.

3 Chance-Constraint Rough Program Formulation

The total power deviation for a schedule X is proportional to the power squared
and is given by

PV (X) =
T∑

i=1

(Pi −M)2 (3)

where the average power over T time slots is given by

M =

(
T∑

i=1

Pi

)
/T (4)

This is the function we seek to minimize.
If each ck in (2) is represented as a rough variable, then the return values

of Pi in (2), M in (4) and PV (X) in (3) are also rough. They can be ranked
by their α-pessimistic values for some predetermined confidence level α ∈ (0, 1].
Our optimization problem needs to make sure that the effects of the uncertainties
could be minimized. Thus a large enough confidence level is required.

Definition 1. Let ϑ be a rough variable given as ([a, b], [c, d]), and α ∈ (0, 1].
Then

ϑα
inf = inf {r|Tr{ϑ ≤ r} ≥ α} (5)

is called the α-pessimistic value of ϑ, where Tr is the trust measure operator,
defined as

Tr{ϑ ≤ r} =





0, r ≤ c
1
2

(
c−r
c−d

)
, c ≤ r ≤ a

1
2

(
c−r
c−d + a−r

a−b

)
, a ≤ r ≤ b

1
2

(
c−r
c−d + 1

)
, b ≤ r ≤ d

1, r ≥ d

(6)



Combining (5) and (6), we have

ϑα
inf =





(1− 2α)c + 2αd, 0 < α ≤ a−c
2(d−c)

2(1− α)c + (2α− 1)d, b+d−2c
2(d−c) ≤ α ≤ 1

c(b−a)+a(d−c)+2α(b−a)(d−c)
(b−a)+(d−c) , a−c

2(d−c) < α < b+d−2c
2(d−c)

(7)

The chance-constraint rough program is given by Prp.

Prp : min PV (X, ξ)α
inf

subject to

X =
⋃

xj , j = 1, ..., N (8)

1 ≤ xj ≤ T, j = 1, ..., N (9)

ξ =
⋃

ck, k = 1, ..., C (10)

G(X) ≤ 0 (11)
L(X) = 0 (12)

The objective function defined by

PV (X, ξ)α
inf = inf{q|Tr{PV (X, ξ) ≤ q} ≥ α} (13)

is based on its α-pessimistic value where α is the large enough confidence level.
Let N denote total number of instructions. A schedule X can be represented
by a set of integer variables xj , which denote the allocated time slots for these
instructions. ξ is the set of rough power consumption parameters defined in (2).
(8), (11) and (12) define the constraint matrix for the processor-specific resource
constraints, and data dependency constraints.

4 Existing GA Solution

Since the objective function of a rough program is multimodal and the search
space is particularly irregular, conventional optimization techniques are unable
to produce near-optimal solutions. Based on the general GA framework proposed
in [10], a problem-specific GA has been proposed [9] to solve the formulation in
Section 3. The three main elements of this algorithm are outlined as follows.

1. Initial Population: An initial population of candidate schedules is a set of
feasible schedules created randomly and ”seeded” with schedules obtained
through conventional (non-power-aware) scheduling algorithms.

2. Fitness Evaluation and Selection: The objective function defined by (13)
is used to evaluate the fitness of schedules in each generation. Then they are
sorted non-decreasingly in terms of their fitness. In order to compute the ob-
jective function (13) of a given schedule X, the following rough simulation
process is used. Let R be the sampling size. For each power consumption pa-
rameter ci ∈ ξ (i = 1, 2, 3, . . .), randomly take R samples from its lower and



upper approximations, lki (k = 1, . . . , R) and uk
i (k = 1, . . . , R), respectively.

The value of the function PV (X, ξ)α
inf is given by the minimum value of v

such that

l (v) + u (v)
2R

≥ α

where l (v) denotes the number of PV
(
X, lk1 , . . . , lki , . . .

)α

inf
≤ v being sat-

isfied when k = 1, . . . , R respectively; and u (v) denotes the number of
PV

(
X, uk

1 , . . . , uk
i , . . .

)α

inf
≤ v being satisfied when k = 1, . . . , R respectively.

The rough simulation process is summarized as in Algorithm 1.

input : A feasible schedule X; lower and upper approximations of each
power consumption parameter ci ∈ ξ; confidence level α; let R be
the sampling size

output: Return of PV (X, ξ)α
inf

for k ← 1 to R do1

foreach power consumption parameter ci ∈ ξ do randomly sample lki2

from its lower approximation;
foreach power consumption parameter ci ∈ ξ do randomly sample uk

i3

from its upper approximation;
end4

l (v)← the number of PV
(
X, lk1 , . . . , lki , . . .

)α

inf
≤ v being satisfied when5

k = 1, . . . , R respectively;
u (v)← the number of PV

(
X, uk

1 , . . . , uk
i , . . .

)α

inf
≤ v being satisfied when6

k = 1, . . . , R respectively;
Find the minimal value v such that7

l (v) + u (v)

2R
≥ α

Return v;8

Algorithm 1: Rough Simulation algorithm.

3. Crossover and Mutation: The selected parents are divided into pairs
and crossovered using 2-point crossover operator. The motivation for using
mutation, then, is to prevent the permanent loss of any particular bit or
allele (premature convergence).

When a pre-determined number of generations is reached, the algorithm
stops. The maximum number of generations depends on the size of the prob-
lem, i.e. the number of instructions and the number of available time slots.



5 Rule-based GA Solution

5.1 Theoretical Basis

The rough simulation algorithm provides an estimate of the range of the objective
function values of a schedule by simulating the possible values for every power
consumption parameter for the whole duration of the program. Thus the larger
the sample size, the better the simulation result. The lengthy computation makes
this GA not practical for use in compilers.

However, we note that for fitness evaluation and selection, we don’t have to
compute the objective function values defined by (13) for each schedule. We ac-
tually only need to know the relative amounts. In this section, we shall establish
the theoretical basis for obtaining the differences in the objective function values
of a set of generated schedules. Lemma 1, Theorem 1 and Corollary 1 also prove
that we can obtain the same result in fitness evaluation and selection as that
given by rough simulation. By removing the time consuming rough simulation,
the computational efficiency of the GA is significantly improved.

Lemma 1. Given two rough variables y = ([ay, by], [cy, dy]) and z = ([az, bz], [cz, dz]),
let u = x + y. Given a confidence level α ∈ (0, 1] which satisfies

α ≥ max
(

by + dy − 2cy

2(dy − cy)
,
bz + dz − 2cz

2(dz − cz)

)

we have
uα

inf = xα
inf + yα

inf (14)

Proof. Since u is the sum of x and y, the lower and upper approximations of
u are computed by adding the values of the corresponding limits (see rough
variable arithmetics in [10]):

u = ([ay + az, by + bz], [cy + cz, dy + dz])

uα
inf , yα

inf and zα
inf are the α-pessimistic values of u, y and z respectively. Based

on (7), these values are given by

uα
inf =





(1− 2α)(cy + cz) + 2α(dy + dz), α ≤ ay+az−cy−cz

2(dy+dz−cy−cz)

2(1− α)(cy + cz) + (2α− 1)(dy + dz), α ≥ pu
(cy+cz)(by+bz−ay−az)+(ay+az)(dy+dz−cy−cz)

(by+bz−ay−az)+(dy+dz−cy−cz)

+ 2α(by+bz−ay−az)(dy+dz−cy−cz)
(by+bz−ay−az)+(dy+dz−cy−cz) , otherwise

(15)

yα
inf =





(1− 2α)cy + 2αdy, α ≤ ay−cy

2(dy−cy)

2(1− α)cy + (2α− 1)dy, α ≥ py
cy(by−ay)+ay(dy−cy)+2α(by−ay)(dy−cy)

(by−ay)+(dy−cy) , otherwise
(16)

zα
inf =





(1− 2α)cz + 2αdz, α ≤ az−cz

2(dz−cz)

2(1− α)cz + (2α− 1)dz, α ≥ pz
cz(bz−az)+az(dz−cz)+2α(bz−az)(dz−cz)

(bz−az)+(dz−cz) , otherwise
(17)



where

pu =
by + bz + dy + dz − 2(cy + cz)

2(dy + dz − cy − cz)

py =
by + dy − 2cy

2(dy − cy)

pz =
bz + dz − 2cz

2(dz − cz)

Note that pu < max(py, pz). Hence if α ≥ max(py, pz), then α ≥ pu. In this case,
we have

yα
inf + zα

inf = uα
inf (18)

This completes the proof.

Remark 1. We do not need to consider the cases α ≤ py and α ≤ pz in (16)
and (17) in Lemma 1. Our optimization problem requires that the effects of the
uncertainties could be minimized. Thus a large enough confidence level is needed
in which case α ≥ max(py, pz) is required. In the rest of this paper, we assume
that α satisfies this condition.

Definition 2. Consider an instruction schedule X1. Schedule X2 is obtained by
rescheduling a single instruction from time slot i to time slot j. Then we say
that instruction schedules X1 and X2 exhibit a ’OneMove’ difference.

If there is a ’OneMove’ difference between X1 and X2, then the power con-
sumption of the two schedules are exactly the same for every time slot except i
and j as shown in Table 1 where c is any one of the power consumption param-
eters in (2).

Table 1. Symbolic power consumption values to illustrate Definition 2.

time slot ... i ... j ...

X1 ... A + c ... B ...

X2 ... A ... B + c ...

Theorem 1. Suppose there is a ’OneMove’ difference in time slots i and j
between two instruction schedules X1 and X2 as shown in Table 1. Let A =
a1 + a2 + ... + an and B = b1 + b2 + ... + bm. Then the difference of the objective
function values defined by (13) for X1 and X2 is given by

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf =
m∑

i=1

(2bic)α
inf −

n∑

i=1

(2aic)α
inf (19)



Proof. The objective function defined by (13) can be computed as a sum of the
contributions from time slots i and j and that of the rest of the time slots.
According to Lemma 1, with a suitable α,

PV (X1, ξ)α
inf =




T∑

k=1,k 6=i,k 6=j

(Pk −M)2




α

inf

+
(
(Pi −M)2 + (Pj −M)2

)α

inf

=




T∑

k=1,k 6=i,k 6=j

(Pk −M)2




α

inf

+
(
(A + c−M)2 + (B −M)2

)α

inf

PV (X2, ξ)α
inf =




T∑

k=1,k 6=i,k 6=j

(Pk −M)2




α

inf

+
(
(Pi −M)2 + (Pj −M)2

)α

inf

=




T∑

k=1,k 6=i,k 6=j

(Pk −M)2




α

inf

+
(
(A−M)2 + (B + c−M)2

)α

inf

The difference is given by

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf

=
(
(A−M)2 + (B + c−M)2

)α

inf
− (

(A + c−M)2 + (B −M)2
)α

inf

= (2Bc)α
inf − (2Ac)α

inf

=
m∑

i=1

(2bic)α
inf −

n∑
i=1

(2aic)α
inf

Hence proved.

Corollary 1. Suppose two schedules X1 and X2 have K (K > 1) ’OneMove’
differences. Then the difference in the objective function values of X1 and X2

equals to the sum of the differences caused by each of the K ’OneMoves’.

Proof. First consider K = 2. There are two ’OneMove’ differences between X1

and X2. We construct an intermediate schedule X3 with one ’OneMove’ differ-
ence compared with X1 and another ’OneMove’ difference compared with X2.
Then

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf

= PV (X2, ξ)α
inf − PV (X1, ξ)α

inf + PV (X3, ξ)α
inf − PV (X3, ξ)α

inf

= (PV (X2, ξ)α
inf − PV (X3, ξ)α

inf ) + (PV (X3, ξ)α
inf − PV (X1, ξ)α

inf )

This completes the proof for K = 2. K > 2 can be proved in the same way.

5.2 Rule Extraction

Corollary 1 tells that the difference between two schedules depends on the
’OneMove’ differences between them. A ’OneMove’ difference is characterized



by two sets of α-pessimistic values (2bic)α
inf and (2aic)α

inf as shown in Theo-
rem 1. Therefore we abstract the rough simulation processes that were used for
computing these α-pessimistic values by a set of rules. Then by matching the
’OneMove’ differences between two given schedules with our rules, the difference
between their objective function returns can be obtained.

A rule corresponds to the rough simulation process of a α-pessimistic value
(2bic)α

inf (or (2aic)α
inf ). Its format is as follows:

1. The premise defines a possible combination of aic (or bic) given the target
VLIW processor. Suppose the instruction set of the processor is divided into
C clusters, we have C2 combinations for (c, ai) (or (c,bi)). Because (2aic)α

inf

and (2cai)α
inf are equal, the reciprocal ones are excluded. Thus we totally

have 1
2 (C2 + C) rules.

2. The conclusion part is the value of (2aic)α
inf or (2bic)α

inf obtained through
rough simulation.

Example 1. Suppose the instruction set of the target VLIW processor is divided
into two clusters. The rough variables representing the two associated power
consumption parameters c1 and c2 are given in Table 2.

Table 2. Power consumption parameters for Example 1.

c1 c2

([19.0, 20.2], [19.0, 20.7]) ([22.0, 23.0], [21.5, 23.3])

The premise of the rules are all combinations of c1 and c2: {c1, c2}: (c1, c2),
(c1, c1), (c2, c2) and (c2, c1). (c2, c1) is actually a repetition of (c1, c2) because
(2c1c2)α

inf and (2c2c1)α
inf are equal. Therefore only three rules are needed.

Let α = 0.95. We compute (2c1c2)α
inf , (2c1c1)α

inf and (2c2c2)α
inf by rough

simulation. The three rules are summarized as a decision table shown in Table 3.

Table 3. Decision table for Example 1.

c ai(bi) DiffObj

1 c1 c2 853.0

2 c1 c1 744.1

3 c2 c2 987.9

The next example illustrates how the rules in Example 1 can be used to rank
two given schedules.



Example 2. There are seven instructions {s1, s2, s3, s4, s5, s6, s7} to be scheduled
in five time slots. For simplicity, let all of them be instructions with single cycle
functional unit latency. Further, assume there are no dependencies among them
and there are no resource usage constraints by the target VLIW processor. Sup-
pose s1, s2, s3 and s7 belong to cluster c1 and s4, s5 and s6 belong to cluster
c2.

Two schedules X1 and X2 as shown in Table 4 are to be ranked according to
their “fitness”.

Table 4. Instruction Schedules for Example 2.

X1 TimeSlot 1 2 3 4 5
Instructions s1 s2,s3 s4 s5,s6 s7

X2 TimeSlot 1 2 3 4 5
Instructions s1 s2 s3,s4 s5 s6,s7

Using the power equation (2), we substitute instructions with their corresponding
(symbolic) power consumption parameters for these two schedules (For simplicity
U(0|0) is ignored since this part is the same in every time slot.) Then we have
the power data for each time slot for the two schedules as in Table 5.

Table 5. Power consumptions for instruction schedules in Example 2.

X1 TimeSlot 1 2 3 4 5
Power c1 c1 + c1 c2 c2 + c2 c1

X2 TimeSlot 1 2 3 4 5
Power c1 c1 c1 + c2 c2 c1 + c2

Comparing the power data shown in Table 5, the two schedules exhibit two
’OneMove’ differences – one between slots 2 and 3 and another between slots 4
and 5. Therefore the difference in the objective function values of X2 and X1

depends on the four α-pessimistic values according to Corollary 1 and Theorem 1,
i.e.

PV (X2, ξ)α
inf −PV (X1, ξ)α

inf = (2c1c2)α
inf − (2c2c2)α

inf +(2c1c2)α
inf − (2c1c1)α

inf

The values of (2c1c2)α
inf , (2c2c2)α

inf and (2c1c1)α
inf can be found in Table 3.

Therefore,

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf = 2× 853.0− 987.9− 744.1 = −26



Hence X2 is worse than X1; its power variation defined by the objective func-
tion (13) is increased by 26 compared with X1.

5.3 Computational Efficiency of Rule-based GA

The computational advantage of the rule-based method can be evaluated using
a real VLIW processor. Our target processor is the TMS320C6711 [11] which is
a VLIW digital signal processor. The instruction set of TMS320C6711 is parti-
tioned into four clusters as in [8]. Therefore, we have ten rules for this VLIW
processor to abstract the rough simulation results of the ten α-pessimistic values.

We perform power-balanced instruction scheduling on five programs taken
from MediaBench [12]. For any given target instruction block, scheduling is per-
formed by means of GA using rough simulation and the proposed rule-based
approach for fitness evaluation and selection. The sample size for rough simula-
tion, the population size and the number of generations are 50, 20 and 20 respec-
tively. The crossover probability, mutation rate, population size and generations
are same in both cases. All our computational experiments were conducted on an
Intel Pentium 4 2.80GHz personal computer with 512MB RAM running under
Microsoft Windows 2000.

Table 6 shows the computation time required by the two GAs. For each
problem instance, the problem size refers to the number of time slots and the
number of instructions in the instruction block. The results show a significant
reduction in computation time. The shorter time required by the rule-based GA
make this approach practical for implementation is real compilers.

Table 6. Computation time of GAs on benchmarks from Mediabench.

Prob. Size Source Rough Simulation GA (sec.) Rule-based GA (sec.)

(28,30) epic 55.98 0.015

(37,30) g721 73.09 0.031

(44,23) gsm 66.53 0.015

(38,34) jpeg 81.83 0.031

(70,58) mpeg2 245.90 0.046

6 Conclusions

This paper presents our continuing research on power-balanced instruction schedul-
ing for VLIW processors using rough set theory to model the uncertainties in-
volved in estimating the power model of the processor. In this paper, we proposed
an efficient rule-based genetic algorithm to solve the scheduling problem which
has been formulated as a rough program. The rules are used to rank the sched-
ules produced in each generation of the GA so that selection decisions can be



made. Therefore the computational efficiency of this GA is significantly improved
compared with those in [9, 10]. The theoretical basis of our method is derived
rigorously. The short computation time required makes the rule-based approach
practical for use in production compilers.

References

1. Yun, H., Kim, J.: Power-aware modulo scheduling for high-performance VLIW
processors, Huntington Beach, California, USA. (2001) 40–45

2. Yang, H., Gao, G.R., Leung, C.: On achieving balanced power consumption in
software pipelined loops, Grenoble, France (2002) 210–217

3. Xiao, S., Lai, E.M.K.: A branch and bound algorithm for power-aware instruction
scheduling of VLIW architecture. In: Proc. Workshop on Compilers and Tools for
Constrained Embedded Syst., Washington DC, USA (2004)

4. Tiwari, V., Malik, S., Wolfe, A., Lee, M.T.: Instruction level power analysis and
optimization of software. (1996) 326–328

5. Gebotys, C.: Power minimization derived from architectural-usage of VLIW pro-
cessors, Los Angeles, USA (2000) 308–311

6. Bona, A., Sami, M., Sciutos, D., Silvano, C., Zaccaria, V., R.Zafalon: Energy
estimation and optimization of embedded VLIW processors based on instruction
clustering, New Orleans, USA (2002) 886–891

7. Xiao, S., Lai, E.M.K.: A rough programming approach to power-aware vliw in-
struction scheduling for digital signal processors, Philadelphia, USA (2005)

8. Xiao, S., Lai, E.M.K.: A rough set approach to instruction-level power analysis of
embedded VLIW processors. In: Proc. Int. Conf. on Information and Management
Sciences, Kunming, China (2005)

9. Xiao, S., Lai, E.M.K.: Power-balanced VLIW instruction scheduling using rough
programming. In: Proc. Int. Conf. on Information and Management Sciences,
Kunming, China (2005)

10. Liu, B.: Theory and practice of uncertain programming. Physica-Verlag, Heidel-
berg (2002)

11. : TMS320C621x/C671x DSP two-level internal memory reference guide. Applica-
tion Report SPRU609, Texas Instruments Inc. (2002)

12. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: a tool for evaluating
and synthesizing multimedia and communications systems. (1997) 330–335


