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Abstract
Speaker verification via the use of sampled speech belongs to a class of biometric recognition problems that offered
a promising alternative approach to the traditional techniques for automatic person authentication. As the primary
objective of a computerized speaker verification system is to be able to efficiently discern between an authentic
speaker and an impostor, the accuracy of the speaker model employed to capture the speaker-specific characteristics
extracted from the speech samples determines the performance level of the verification system. In this paper, a
cerebellar-based approach to the text-dependent speaker verification problem is presented. The proposed technique
employs the novel PSECMAC network to model the speaker-specific voice characteristics extracted via an MFCC
analysis. Experiments performed on ten recruited speakers yielded an average frame-by-frame classification EER
of 11.4%. The verification performances of the proposed system are encouraging.
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1 Introduction
The ability to accurately differentiate a person from
another is the key requirement in applications that
involve the control or authorization of access to secured
areas or materials. Some of these include automated
banking, computer network security and retrieval of
confidential information. Biometrics, or biometric
recognition, refers to the kaleidoscope of technologies
that employs biologically measurable and unique
human physiological or behavioral characteristics for
person recognition purposes. Examples of the
biometric data used for person recognition include
fingerprints, palm prints, iris and retinal scans, DNA,
facial characteristics, and voice. Biometric-based
recognition has many advantages over the traditional
person recognition methods. Biometric characteristics
cannot be forgotten or easily stolen and therefore a
biometric-based person recognition system is robust
against impostor attacks. The use of biometric-based
authentication is also becoming socially acceptable
since it is inexpensive and convenient to use.

Speaker recognition is a person recognition method
using voice-induced biometrics information. Voice-
based person recognition is highly economical and
convenient as the users are only required to input
a spoken phrase to the system in order to have
their identity verified. The individual-specific voice
characteristics are derived from the uniqueness in the
behavioral and physiological aspects of the speaker’s
speech production system. Phonetics and linguistics
research has established that the main differentiating
physiological aspect of the human speech production
system is the vocal tract [1]. Since no two vocal tracts
are exactly the same, each individual’s voice has certain
acoustic peculiarities that characterize his/her vocal
tract. The objective of a speaker recognition system

is therefore to capture and exploit these differentiating
features to discern between speakers. Speaker
recognition can be classified into two problems [2]:
(1) speaker identification and (2) speaker verification
(authentication). Speaker identification is the problem
of determining the identity of a speaker from a
closed set of candidates. Speaker verification, on
the other hand, refers to the problem of verifying
the identity claim of the speaker. Both speaker
identification and speaker verification systems can be
further classified into the text-dependent and text-
independent recognition methods.

Current research on speaker verification promote
the use of statistical and probabilistic modeling of
the speaker-specific characteristics [3, 4] as well as
classical machine learning and pattern analysis-based
speaker models [5, 6]. Although many technological
advances and implementation successes in speaker
recognition have been achieved recently, there are still
major problems impeding the effective deployment of
voice-based person recognition systems [7]. Most of
these problems can be attributed to speaker variability
and noise interferences. Speaker-induced variability
(e.g. speaking rate, acoustic variability due to colds
or disguise) and the variability in recording conditions
as well as channel distortions affect the quality of
the measured voice biometrics data. To resolve
these problems, a set of speaker-differentiating features
that is robust against speaker-variability as well as a
recognition system that is able to efficiently cope with
such variability and distortions are necessary.

This paper proposes the use of the newly developed
cerebellar-based computational model named
PSECMAC to perform text-dependent speaker
verification. The research is motivated by everyday
observations that aptly demonstrate how a human
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effortlessly employs his/her natural innate ability that
facilitates the accurate perception of different auditory
stimulants to perform speaker recognition proficiently.
The human ability to differentiate sounds stems from
the human auditory system’s capacity to distinguish the
different frequency components of acoustic signals [8].
Biological research has established that the human
auditory nerves process soundtonotopically [9],
where different sets of auditory nerve fibers respond
selectively to the different frequencies of the acoustic
signal. The auditory areas in the human brain are
organized in a distinctive neuralsound map [8]
formation where the nerve fibers are topologically
arranged with respect to their respective frequency
stimulus. This pattern of organization is highly similar
to the one observed in the human cerebellum, where
different regions of the cerebellar cortex process
the information from different sensory inputs [10].
This similarity subsequently motivates the use of the
PSECMAC cerebellar model to perform automatic
speaker verification.

The rest of this paper is organized as follows. Section 2
briefly describe the architecture of the PSECMAC
network and highlights the cerebellar-inspired memory
formation and knowledge acquisition process of the
network. Section 3 presents the mechanisms of
the proposed cerebellar-based speaker recognition
system. The experimental results and analysis of the
performances of the text-dependent PSECMAC-based
speaker verification system are presented in Section 4.
Section 5 concludes this paper.

2 The PSECMAC Network
The cerebellum constitutes a part of the human brain
that is important for motor control and cognitive
functions [11], including motor learning and memory.
The human cerebellum is postulated to function as
a movement calibrator [10], which is involved in
the detection of movement error and the subsequent
coordination of the appropriate skeletal responses to
reduce the error. It functions by performingassociative
mappingsbetween the input sensory information and
the cerebellar output required for the production
of temporal-dependent precise behaviors [8]. The
human cerebellum has been classically modelled
by the Cerebellar Model Articulation Controller
(CMAC) [12]. As a computational model of the
human cerebellum, CMAC manifests as an associative
memory network, where the memory cells are
uniformly quantized to cover the entire input space.
The CMAC network operation is characterized by the
table lookup access of its memory cells. This allows for
advantages such as localized generalization and rapid
algorithmic computation.

This paper proposes the use of a brain-inspired
cerebellar-based learning memory model named
Pseudo Self-Evolving Cerebellar Model Arithmetic
Computer (PSECMAC) as a generic functional model
of the human cerebellum for solving approximation,
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Figure 1: Comparison of CMAC and PSECMAC
memory quantization for 2D input problem

modeling, control and classification problems. This
architecture differs from the CMAC network intwo
aspects. Firstly, the PSECMAC network employs
one layer of network cells, but maintained the
computational principles of the layered-based CMAC
network by adopting a neighborhood activation of its
computing cells to facilitate: (1) smoothing of the
computed output; (2) distributed learning paradigm;
and (3) activation of highly correlated computing
cells in the input space. Secondly, instead of uniform
partitioning of the memory cells, the PSECMAC
network employs the PSEC clustering technique [13]
to form an experience-driven adaptive memory
quantization mechanism of its network cells. Figure 1
illustrates this fundamental architectural distinction.

The adaptive quantization process of the PSECMAC
network is performed in per dimension basis.
The non-uniform quantization of the PSECMAC
memory structure is inspired by the neurophysiological
properties of the brain development, where the
precise wiring in the adult brain is a result of
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experience-dependent refinement of initial architecture
through repeated exposures to external stimuli. This
experience-dependent plasticity is also observed in
the human cerebellum [14], and is incorporated to
the PSECMAC network through the PSEC clustering
algorithm. Each training data point is a learning
episode to the network. In each input dimension,
the PSEC clustering algorithm is used to compute
clusters of data density, and the memory axes in each
dimension are allocated based on the observed density
profile of the training data. Thus, more memory cells
are allocated to the densely populated regions of the
input space. The details on the adaptive quantization
algorithm is reported in [15].

The PSECMAC network employs aWeighted Gaussian
Neighborhood Output (WGNO) computational
process, where a set of neighborhood-bounded
computing cells is activated to derive an output
response to the input stimulus. For each input stimulus
X, the computed output is derived as follows:

Step 1: Determine the region of activation
Each input stimulusX activates a neighborhood of
PSECMAC computing cells. The neighborhood
size is governed by the neighborhood constant
parameterN , and the activated neighborhood is
centered at the input stimulus (see Fig 1(b)).

Step 2: Compute the Gaussian weighting factors
Each activated cell has a varied degree of
activation that is inversely proportional to its
distance from the input stimulus. These degrees
of activation functioned as weighting factors to the
memory contents of the active cells.

Step 3: Retrieve the PSECMAC output
The output is the weighted sum of the memory
contents of the active cells.

Following this, the PSECMAC network adopts a
modifiedWidrow-Hoff learning rule[16] to implement
a Weighted Gaussian Neighborhood Update(WGNU)
learning process. The network update process is briefly
described as follows:

Step 1: Computation of the network output
The output of the network corresponding to the
input stimulus X is computed based on the
WGNO process.

Step 2: Computation of learning error
The learning error is defined as the difference
between the expected output and the current
output of the network.

Step 3: Update of active cells
The learning error is subsequently distributed to
all of the activated cells based on their respective
weighting factors.

3 The PSECMAC-based Speaker
Verification System

Figure 2 depicts the block diagram of the proposed
PSECMAC-based speaker verification system. The
speaker verification system in Figure 2 consists of
two main modules: a feature extraction block and the
PSECMAC network. The feature extraction module
computes the Mel-Frequency Cepstral Coefficients
(MFCCs) to characterize the speech signals from
the different speakers. During the training process,
the PSECMAC network is used to learn and model
the speaker-specific characteristics derived from the
MFCCs values. In the testing phase, the PSECMAC-
based speaker models are employed to perform
the frame by frame verification of the incoming
speaker voice. The computational mechanisms of
the PSECMAC-based speaker verification system are
described in the following sub-sections.

3.1 Preprocessing of Speech Signal

In this paper, the front-end preprocessing techniques
that are applied to the incoming speech signal consist
of: (1) speech signal segmentation; (2) windowing;
and (3) voicing detection. The voice samples from
each speaker are segmented into frames, where each
voice frame consists ofM = 256 data samples (this
is approximately30 ms long for a sampling frequency
fs of 8192 samples/sec). A20 ms overlap between
successive frames is employed to avoid information
loss due to the use of an improper starting point in
the segmentation process. Subsequently, the Hamming
windowing technique is applied to attenuate the effect
of signal discontinuities at the beginning and the end
of each frame and to minimize the spectral distortion
introduced by the segmentation process.

In the final step of the preprocessing stage, voicing
detection is applied to the windowed speech segments.
The purpose of the voicing detector is to identify
and extract the voiced speech frames and to remove
the unvoiced and silence frames. Unvoiced speech
is produced when the air flow from the lungs is not
modulated by the vocal cords and this results in a
white-noise-like excitation signal to the vocal tract.
The unvoiced speech frames therefore do not possess
the quasi-stationary property that can be exploited for
speaker characterization. In this paper, a Modified Zero
Crossing Rate (MZCR) algorithm [17] is employed to
effectively discern between the voiced, unvoiced and
silence speech frames.

3.2 Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCCs) [9]
refer to the set of cepstral coefficients that are
computed using the Mel-frequency scale that closely
approximates the frequency responses of the human
auditory system. The Mel-frequency scale is a
perceptual scale of pitches derived from empirical
studies on human listeners. It follows a linear
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Figure 2: The proposed PSECMAC-based speaker verification system

frequency spacing for the frequency range below1000
Hz and a logarithmic spacing for the frequency range
above1000 Hz (see Figure 2). For the purpose of
the study, a total of21 MFCCs are extracted per
speech frame. However, the first MFCC component
(i.e. MFCC0) is excluded from the set of features
employed for the speaker verification task. This is
because MFCC0 represents the mean value of the
speech segment and thus contains little speaker-specific
information [17].

3.3 PSECMAC Modeling of Speaker-
Specific Characteristics

In this study, each speaker is characterized by the first
six MFCCs (i.e. MFCC1 − MFCC6) out of the 20
valid MFCCs computed from his/her digitized voiced
speech samples. This is motivated by the fact that the
characteristics of the vocal tract that discern between
the individual speakers are concentrated in the low
quefrency domain of the voiced speech signal [9].
Thus, PSECMAC performs the associative mapping
between the speaker-specific characteristics of the
vocal tract to the identity of the respective speaker.

4 Experiments and Results

4.1 Dataset

The voice samples used in this study were collected
from 10 randomly selected adult speakers consisting
of six males and four females. The collected speech
samples are first converted to wave files (*.wav) with
a sampling frequency (fs) of 8192 samples/second to
obtain a speech quality that is compatible to that of
typical day-to-day telephony applications. Based on
the computed MFCCs of the voiced speech frames,
speaker verifications are performed. Each speaker is
characterized by the first six MFCCs of his/her voiced
speech segment. The MFCCs of each speech segment
form a data tuple. Therefore, there is a total of100
such data tuples for each speaker in the experiments.
The presentation order of the data is randomized
and a three-fold cross validation (CV) approach was
adopted throughout the evaluation process. Each CV
group consists of a training and a testing set. In the
experiments, the training set comprises of40% of the

entire MFCCs dataset of each speaker. The remaining
60% of the dataset constitutes the testing set such that
the training and testing sets of each CV are mutually
exclusive. On the other hand, there is a25% overlap
between the training sets of successive CV groups.

For each speaker, the final training and testing sets of a
CV group consist of the training and testing samples
of the corresponding CV groups of all the speakers.
A single output is subsequently used to differentiate
between the MFCCs data samples belonging to the
actual speaker and those belonging to the impostors.
The data samples that belong to the actual speaker are
denoted with an output ”1” while those that belong to
the impostors are marked with an output ”0”. Since
the number of impostor input samples far exceeds that
of the actual speaker in the resultant training sets, the
training of the PSECMAC-based speaker verification
system using the CV groups described above is termed
as the ”unbalanced” training scenario.

4.2 Experimental Results and Analysis

The simulation is performed for all the three CV groups
of the ten speakers; that is, a total of30 experiments.
The classification threshold (to discern between the
actual speaker and the impostors) is varied to derive
the receiver-operating-characteristics (ROC) curves for
each evaluated CV group. TheEqual Error Rate
(EER) readings extracted from the ROC curves are
subsequently employed as the performance measure
of the speaker verification system. Type I error is
defined as the error of falsely rejecting the voice input
of the actual speaker whereas Type II error is the error
of accepting the impostor’s voice input as that of the
actual speaker. EER denotes the point where Type I
error equals Type II error.

A PSECMAC network with a memory size of
6 cells per dimension is constructed for the
speaker verification task. As benchmarks, the
set of experiments is repeated by using various
well-established computational architectures. The
benchmarking systems evaluated in this study are: (1)
the basic CMAC network [12]; (2) the Multi-Layered
Perceptron (MLP); (3) the Radial Basis Function
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Table 1: The performances of the benchmarked speaker verification systems – Unbalanced training scenario

Average Equal Error Rate [%] Average EER EER
Network P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total[%] Std Dev
CMAC 21.75 15.98 10.43 7.60 14.32 9.46 18.92 9.46 15.38 8.47 13.18 5.18

PSECMAC 15.28 13.05 8.50 8.58 16.13 12.29 14.95 10.53 12.24 9.22 12.08 2.72

MLP (6-13-1) 36.93 39.59 24.92 21.38 10.15 24.54 27.60 40.17 36.09 19.44 28.08 17.17

RBF 22.30 17.95 16.44 6.42 20.10 11.70 22.51 10.77 17.13 12.37 15.77 5.29

GenSoFNN-CRI22.20 16.02 18.76 11.69 20.26 17.67 13.60 11.60 19.18 13.92 16.49 3.94

Table 2: The performances of the benchmarked speaker verification systems – Balanced training scenario

Average Equal Error Rate [%] Average EER EER
Network P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Total[%] Std Dev
CMAC 21.78 16.56 10.66 7.58 16.55 9.47 18.63 9.44 15.16 8.48 13.43 5.22

PSECMAC 11.84 12.48 9.96 7.81 12.93 10.53 14.03 9.51 14.98 9.54 11.36 3.48

MLP (6-13-1) 28.72 33.62 9.86 5.63 13.68 12.74 23.98 15.19 8.77 17.27 16.95 9.16

RBF 19.19 17.20 14.01 8.85 18.10 16.68 16.79 11.72 13.47 11.15 14.72 2.76

GenSoFNN-CRI22.38 15.66 16.68 12.53 21.28 19.48 15.50 12.68 17.95 16.04 17.02 3.78

network (RBF); and (4) the Generic Self-Organizing
Fuzzy Neural Network with the Compositional Rule
of Inference scheme (GenSoFNN-CRI) [18]. The
network size of CMAC has been defined as6 cells per
dimension to maintain a fair performance comparison
with PSECMAC. The MLP has a predefined structure
that consists of six input, thirteen hidden and one
output nodes respectively while the RBF network
is initialized to contain 100 hidden layer nodes.
Meanwhile, the parameters of the GenSoFNN-CRI
model has been empirically optimized.

Table 1 summarizes the average frame-by-frame EER
values achieved by the various systems. From
Table 1, one can observe that the PSECMAC network
achieved the best verification performances among
all the benchmarked systems. PSECMAC reports
the lowest average EER of approximately12% and
a EER standard deviation of only2.72% across all
the evaluated speakers, thereby demonstrating the
accuracy and consistency of its speaker models. The
PSECMAC speaker model also outperformed that of
the benchmarked CMAC network. The degraded
speaker verification performances of CMAC are largely
due to the uniform allocation of its memory cells. The
rigid uniform partitioning of the input space limits the
modeling accuracy of the CMAC network and thus
leads to a suboptimal performance. From the results
tabulated in Table 1, one can also observe that the
MLP network reports the poorest speaker verification
performances with an average EER of approximately
28%. The inferior performances of the MLP-based
speaker verification system may be attributed to the
use of the ”unbalanced” training scenario, where the
number of impostor samples in the training set far
exceeds the number of authentic ones. Machine
learning research has long established that the MLP is
a connectionist network that employs global learning,
whereby each presentation of a training sample adapts
the weights of its entire network structure. Thus,
training the MLP with the ”unbalanced” training

scenario will result in speaker models that are heavily
biased towards the rejection of the impostors’ speech
samples. Consequently, the performances of the
resultant MLP-based speaker verification system are
severely impaired by the large Type I errors.

To investigate how the data composition of the
training set affects the performances of the speaker
verification systems, the set of simulations on the
benchmarked architectures is subsequently repeated
with a ”balanced” training scenario. In the ”balanced”
training scenario, the training sets of the three CV
groups of each speaker are modified by duplicating
the positive training samples (i.e. samples belonging
to the authentic class) until the number of authentic
samples equals the number of impostor samples. The
testing sets of the CV groups remain unchanged.
Table 2 tabulates the speaker verification performances
of the benchmarked architectures for the ”balanced”
training scenario. From Table 2, it is again evident
that the PSECMAC-based speaker verification system
comprehensively outperformed all the benchmarked
systems based on the average EER values across
all the evaluated speakers. The results tabulated in
Tables 1 and 2 show that the ”balanced” training
scenario improves the average EER performances of
the PSECMAC-based speaker verification system by
approximately5.9%((12.08 − 11.36)/12.08). The
overall improvement in the verification accuracy of
the PSECMAC-based speaker verification system can
be attributed to the balanced data distribution of the
positive (actual) and negative (impostor) samples in
the training set, which allows for better memory cell
allocations in the resultant trained PSECMAC speaker
models. This generally results in the higher modeling
accuracies of the speaker models that subsequently
translate to improved verification performances.

The simulation results in Tables 1 and 2 also showed
that the average EER values of the MLP network
improved by39.6%((28.08− 16.95)/28.08) under the
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”balanced” training scenario, thereby demonstrating
the sensitivity of the MLP-based speaker models
towards the structure of the training sets. Slight
improvements were also noted for the RBF-based
speaker verification systems and these can be attributed
to the balanced data distribution of the two classes
in the training sets. On the other hand, minor
degradations in the performances of the CMAC and
GenSoFNN-CRI-based speaker verification systems
suggest that the duplicated positive samples introduced
to the training sets have a slight detrimental effect
on the performances of the corresponding speaker
models. This may be due to the inherent learning and
computational process of these two networks.

5 Conclusion
This paper presented a cerebellar-based approach to
the text-dependent speaker verification problem. The
proposed speaker verification system employs
the novel PSECMAC network, which is a
neurologically-inspired computational model of
the human cerebellum, to model the speaker-specific
characteristics of the human voice via the MFCC
values extracted from the sampled voice segments.
This study was motivated by the physiology of the
human auditory system and the psychology of the
human perception to acoustic sounds, which facilitate
the human innate ability to accurately perform the
speaker recognition process in everyday life.

The proposed PSECMAC-based speaker verification
system was subsequently employed to verify the
voice inputs of ten adult speakers. The verification
performances of the PSECMAC speaker models were
evaluated against those of the basic CMAC and
GenSoFNN networks as well as the classical machine
learning models of MLP and RBF networks. The
experimental results had sufficiently demonstrated the
superior accuracy of the PSECMAC-based speaker
verification system to the benchmarked models.
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