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Abstract

Speaker verification via the use of sampled speech belongs to a class of biometric recognition problems that offered
a promising alternative approach to the traditional techniques for automatic person authentication. As the primary
objective of a computerized speaker verification system is to be able to efficiently discern between an authentic
speaker and an impostor, the accuracy of the speaker model employed to capture the speaker-specific characteristics
extracted from the speech samples determines the performance level of the verification system. In this paper, a
cerebellar-based approach to the text-dependent speaker verification problem is presented. The proposed technique
employs the novel PSECMAC network to model the speaker-specific voice characteristics extracted via an MFCC
analysis. Experiments performed on ten recruited speakers yielded an average frame-by-frame classification EER
of 11.4%. The verification performances of the proposed system are encouraging.

Keywords: speaker verification, text dependent, PSECMAC, CMAC, cerebellum

1 Introduction is therefore to capture and exploit these differentiating
The ability to accurately differentiate a person fromfeature.s. to discern betyyeen speakers. Speaker
fecognition can be classified into two problems [2]:

another is the key requirement in applications tha 1) speaker identification and (2) speaker verification

involve the control or authorization of access to secure L . e
areas or materials. Some of these include automate uthentication). Speaker identification is the problem

banking, computer network security and retrieval of° determining the' identity of a speak.e'r fr'om a
confidential information. Biometrics, or biometric closed set of candidates. Speaker vern‘lcathn,_ on
recognition, refers to the kaleidoscope of technologiez%he (_)ther. hand,. refers to the problem of verifying
that employs biologically measurable and unique.he identity claim of the speaker. Both speaker

human physiological or behavioral characteristics fO'JdenUﬁcanon f”?”d speaker verification systems can be
person recognition purposes. Examples of thefurther classified into the text-dependent and text-
biometric data used for person recognition includeIndependent recognition methods.

fingerprints, palm prints, iris and retinal scans, DNA
facial characteristics, and voice. Biometric-base
recognition has many advantages over the tradition
person recognition methods. Biometric characteristic%I
cannot be forgotten or easily stolen and therefore
biometric-based person recognition system is robus
against impostor attacks. The use of biometric-base

'Current research on speaker verification promote
e use of statistical and probabilistic modeling of
e speaker-specific characteristics [3, 4] as well as
assical machine learning and pattern analysis-based
peaker models [5, 6]. Although many technological
dvances and implementation successes in speaker
ecognition have been achieved recently, there are still
EFnajor problems impeding the effective deployment of
voice-based person recognition systems [7]. Most of
&hese problems can be attributed to speaker variability
and noise interferences. Speaker-induced variability
O(e.g. speaking rate, acoustic variability due to colds
or disguise) and the variability in recording conditions
s well as channel distortions affect the quality of
e measured voice biometrics data. To resolve
ese problems, a set of speaker-differentiating features
at is robust against speaker-variability as well as a
gecognition system that is able to efficiently cope with
auch variability and distortions are necessary.

since it is inexpensive and convenient to use.

Speaker recognition is a person recognition metho
using voice-induced biometrics information. \oice-
based person recognition is highly economical an
convenient as the users are only required to inpu
a spoken phrase to the system in order to hav
their identity verified. The individual-specific voice

characteristics are derived from the unigueness in th
behavioral and physiological aspects of the speaker’
speech production system. Phonetics and linguistic
research has established that the main differentiatin

physiological aspect of the human speech production, .
system is the vocal tract [1]. Since no two vocal tractsll]-hls paper proposes the use of the newly developed

re exactly th m hindividual's voice h i icerebellar—based computational model named
are exactly the same, eac ualsvoice has Ceraiggecpac o perform text-dependent speaker

acoustic peculiarities that characterize his/her voca . ification. The research is motivated by everyday
tract. The objective of a speaker recognition SyStenbbservations that aptly demonstrate how a human
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effortlessly employs his/her natural innate ability that
facilitates the accurate perception of different auditory Neighborhood Lz

Stimulus

stimulants to perform speaker recognition proficiently.
The human ability to differentiate sounds stems from
the human auditory system’s capacity to distinguish the
different frequency components of acoustic signals [8].
Biological research has established that the human
auditory nerves process sountbnotopically [9],
where different sets of auditory nerve fibers respond
selectively to the different frequencies of the acoustic
signal. The auditory areas in the human brain are
organized in a distinctive neurasound map[8]
formation where the nerve fibers are topologically
arranged with respect to their respective frequency
stimulus. This pattern of organization is highly similar
to the one observed in the human cerebellum, where
different regions of the cerebellar cortex process
the information from different sensory inputs [10].
This similarity subsequently motivates the use of the
PSECMAC cerebellar model to perform automatic
speaker verification.

The rest of this paper is organized as follows. Section 2
briefly describe the architecture of the PSECMAC
network and highlights the cerebellar-inspired memory
formation and knowledge acquisition process of the
network. Section 3 presents the mechanisms of
the proposed cerebellar-based speaker recognition
system. The experimental results and analysis of the
performances of the text-dependent PSECMAC-based
speaker verification system are presented in Section 4.
Section 5 concludes this paper.

2 The PSECMAC Network (b) PSECMAC
The cerebellum constitutes a part of the human brain Figure 1: Comparison of CMAC and PSECMAC
that is important for motor control and cognitive memory quantization for 2D input problem

functions [11], including motor learning and memory.
The human cerebellum is postulated to function as
a movement calibrator [10], which is involved in
the detection of movement error and the subseque
coordination of the appropriate skeletal responses t
reduce the error. It functions by performiagsociative

mappingsbetween the input sensory information and
the cerebellar output required for the production
of temporal-dependent precise behaviors [8]. Th
human cerebellum has been classically modelle

by the Cerebellar Model Articulation Controller and (3) activation of highly correlated computing

(CMAC) [12]. As a computa_tlonal model of t_he_ cells in the input space. Secondly, instead of uniform
human cerebellum, CMAC manifests as an assoc'at'vﬁartitioning of the memory cells, the PSECMAC

memory network, where the memory cells are

odeling, control and classification problems. This
rchitecture differs from the CMAC network itwo
gspects. Firstly, the PSECMAC network employs
one layer of network cells, but maintained the
computational principles of the layered-based CMAC
network by adopting a neighborhood activation of its
omputing cells to facilitate: (1) smoothing of the
omputed output; (2) distributed learning paradigm;

torml tized t h tire input network employs the PSEC clustering technique [13]
uniformly quantized to cover the entireé Input space.., 5. gn experience-driven adaptive memory

The CMAC network operation is characterized by thequantization mechanism of its network cells. Figure 1

table lookup access of its memory cells. This allows foriléus;trates this fundamental architectural distinction.

advantages such as localized generalization and rapi
algorithmic computation. The adaptive quantization process of the PSECMAC
etwork is performed in per dimension basis.
he non-uniform quantization of the PSECMAC
memory structure is inspired by the neurophysiological
properties of the brain development, where the
precise wiring in the adult brain is a result of

This paper proposes the use of a brain-inspire
cerebellar-based learning memory model name
Pseudo Self-Evolving Cerebellar Model Arithmetic
Computer (PSECMAC) as a generic functional model
of the human cerebellum for solving approximation,
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experience-dependent refinement of initial architectured The PSECMAC-based Speaker
through repeated exposures to external stimuli. This  Verification System

experience-dependent plasticity is also observed in_ . )

the human cerebellum [14], and is incorporated toFigure 2 depicts the block diagram of the proposed
the PSECMAC network through the PSEC clusteringPSECMAC-based speaker verification system. The

algorithm. Each training data point is a learning SPeaker verification system in Figure 2 consists of
episode to the network. In each input dimension WO main modules: a feature extraction block and the

the PSEC clustering algorithm is used to compute®SECMAC network. The feature extraction module

clusters of data density, and the memory axes in eackomputes the Mel-Frequency Cepstral Coefficients
dimension are allocated based on the observed densiff/fFCCs) to characterize the speech signals from
profile of the training data. Thus, more memory cellsthe different speakers. During the training process,
are allocated to the densely populated regions of théhe PSECMAC network is used to learn and model

input space. The details on the adaptive quantizatiote speaker-specific characteristics derived from the
algorithm is reported in [15]. MFCCs values. In the testing phase, the PSECMAC-

based speaker models are employed to perform
The PSECMAC network employsvileighted Gaussian the frame by frame verification of the incoming
Neighborhood Output (WGNO) computational speaker voice. The computational mechanisms of
process, where a set of neighborhood-boundethe PSECMAC-based speaker verification system are
computing cells is activated to derive an outputdescribed in the following sub-sections.
response to the input stimulus. For each input stimulus

X, the computed output is derived as follows: 3.1 Preprocessing of Speech Signal
In this paper, the front-end preprocessing techniques
Step 1: Determine the region of activation that are applied to the incoming speech signal consist

Each input stimuluX activates a neighborhood of ©f: (1) speech signal segmentation; (2) windowing;
PSECMAC computing cells. The neighborhood and (3) voicing detection. The voice samples from
size is governed by the neighborhood constangach speaker are segmented into frames, where each
parameterlV, and the activated neighborhood is Voice frame consists al/ = 256 data samples (this

centered at the input stimulus (see Fig 1(b)). is approximately30 ms long for a sampling frequency
fs of 8192 samples/sec). A0 ms overlap between

Step 2: Compute the Gaussian weighting factors successive frames is employed to avoid information
Each activated cell has a varied degree ofioss due to the use of an improper starting point in
activation that is inversely proportional to its the segmentation process. Subsequently, the Hamming
distance from the input stimulus. These degreesvindowing technique is applied to attenuate the effect
of activation functioned as weighting factors to the of signal discontinuities at the beginning and the end
memory contents of the active cells. of each frame and to minimize the spectral distortion

introduced by the segmentation process.
Step 3: Retrieve the PSECMAC output y ¢ P

The output is the weighted sum of the memory |, the final step of the preprocessing stage, voicing
contents of the active cells. detection is applied to the windowed speech segments.
The purpose of the voicing detector is to identify

Following this, the PSECMAC network adopts a @nd extract the voiced speech frames and to remove

modifiedWidrow-Hoff learning rulg[16] to implement ~ the unvoiced and silence frames. Unvoiced speech
aWeighted Gaussian Neighborhood Upd@féGNU) IS produced when the air flow from the lungs is not

learning process. The network update process is brieflfiodulated by the vocal cords and this results in a
described as follows: white-noise-like excitation signal to the vocal tract.

The unvoiced speech frames therefore do not possess

the quasi-stationary property that can be exploited for
Step 1: Computation of the network output speaker characterization. In this paper, a Modified Zero
The output of the network corresponding to theCrossing Rate (MZCR) algorithm [17] is employed to
input stimulus X is computed based on the effectively discern between the voiced, unvoiced and
WGNO process. silence speech frames.

Step 2: Computation of learning error
The learning error is defined as the difference o
between the expected output and the currenMel-Frequency Cepstral Coefficients (MFCCs) [9]

3.2 Feature Extraction

output of the network. refer to the set of cepstral coefficients that are
) computed using the Mel-frequency scale that closely
Step 3: Update of active cells approximates the frequency responses of the human

The learning error is subsequently distributed toauditory system. The Mel-frequency scale is a
all of the activated cells based on their respectiveperceptual scale of pitches derived from empirical
weighting factors. studies on human listeners. It follows a linear
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Figure 2: The proposed PSECMAC-based speaker verification system

frequency spacing for the frequency range belo@®0  entire MFCCs dataset of each speaker. The remaining
Hz and a logarithmic spacing for the frequency range0% of the dataset constitutes the testing set such that
above 1000 Hz (see Figure 2). For the purpose of the training and testing sets of each CV are mutually
the study, a total o21 MFCCs are extracted per exclusive. On the other hand, there ig&% overlap
speech frame. However, the first MFCC componenbetween the training sets of successive CV groups.
(i.,e. MFCG) is excluded from the set of features
employed for the speaker verification task. This isFor each speaker, the final training and testing sets of a
because MFCE represents the mean value of the CV group consist of the training and testing samples
speech segment and thus contains little speaker-specifaf the corresponding CV groups of all the speakers.
information [17]. A single output is subsequently used to differentiate
between the MFCCs data samples belonging to the
3.3 PSECMAC Modeling of Speaker- actual speaker and those belonging to the impostors.
Specific Characteristics The data samples that belong to the actual speaker are
) . . . denoted with an output "1” while those that belong to
In this study, gach speaker is characterized by the firgj,o impostors are marked with an output "0”. Since
six MFCCs (i.e. MFCG — MFCGC;) out of the 20 he number of impostor input samples far exceeds that
valid MFCCs computed from his/her digitized voiced of the actual speaker in the resultant training sets, the
speech samples. This is motivated by the fact that th?raining of the PSECMAC-based speaker verification

characteristics of the vocal tract that discern betweergystem using the CV groups described above is termed
the individual speakers are concentrated in the lovWg the "unbalanced” training scenario.

quefrency domain of the voiced speech signal [9].
Thus, PSECMAC performs the associative mappingg 2 Experimental Results and Analysis
between the speaker-specific characteristics of the

vocal tract to the identity of the respective speaker. The simulation is performed for all the three CV groups
of the ten speakers; that is, a total3ff experiments.

4 Experiments and Results The classification threshold (to discern between the
actual speaker and the impostors) is varied to derive
4.1 Dataset the receiver-operating-characteristics (ROC) curves for

The voice samples used in this study were collecte§@ch evaluated CV group. Thequal Error Rate
from 10 randomly selected adult speakers consistindEER) readings extracted from the ROC curves are
of six males and four females. The collected speectiuPseduently employed as the performance measure
samples are first converted to wave files (*wav) with©f the speaker verification system. Type | error is
a sampling frequencyf() of 8192 samples/second to defined as the error of falsely rejecting the voice input
obtain a speech quality that is compatible to that of°f the actual speaker whereas Type Il error is the error
typical day-to-day telephony applications. Based orPf accepting the impostor’s voice mpu_t as that of the
the computed MFCCs of the voiced speech frames‘?‘cwal speaker. EER denotes the point where Type |
speaker verifications are performed. Each speaker 70" €quals Type Il error.

characterized by the first six MFCCs of his/her voiced
speech segment. The MFCCs of each speech segment
form a data tuple. Therefore, there is a totall6f)

PSECMAC network with a memory size of

cells per dimension is constructed for the

such data tuples for each speaker in the experimentgpeaker verlf_|cat|on .taSk' As benchr_narks, _the
et of experiments is repeated by using various

The presentation order of the data is randomize well-established computational architectures.  The
and a three-fold cross validation (CV) approach wa ; P L o
?enchmarklng systems evaluated in this study are: (1)

adopted throughout the evaluation process. Each C he basic CMAC network [12]: (2) the Multi-Layered

group consists of a training and a testing set. In th ) . ) ;
experiments, the training set comprisesi6%; of the %erceptron (MLP); (3) the Radial Basis Function
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Table 1: The performances of the benchmarked speaker verification systems — Unbalanced training scenario

Average Equal Error Rate [%] Average EER EER
Network P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Tot@l]  Std Dev
CMAC 21.75 15.98 10.43 7.60 14.32 9.46 18.92 9.46 15.38 8.47 13.18 5.18

PSECMAC 15.28 13.05 8.50 8.58 16.13 12.29 14.95 10.53 12.24 9.22 12.08 2.72
MLP (6-13-1) 36.93 39.59 24.92 21.38 10.15 24.54 27.60 40.17 36.09 19.44 28.08 17.17
RBF 22.30 17.95 16.44 6.42 20.10 11.70 22.51 10.77 17.13 12.37 15.77 5.29
GenSoFNN-CRI22.20 16.02 18.76 11.69 20.26 17.67 13.60 11.60 19.18 13.92 16.49 3.94

Table 2: The performances of the benchmarked speaker verification systems — Balanced training scenario

Average Equal Error Rate [%] Average EER EER
Network P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Totglo] Std Dev
CMAC 21.78 16.56 10.66 7.58 16.55 9.47 18.63 9.44 15.16 8.48 13.43 5.22
PSECMAC 11.84 12.48 9.96 7.81 12.93 10.53 14.03 9.51 14.98 9.54 11.36 3.48
MLP (6-13-1) 28.72 33.62 9.86 5.63 13.68 12.74 23.98 15.19 8.77 17.27 16.95 9.16
RBF 19.19 17.20 14.01 8.85 18.10 16.68 16.79 11.72 13.47 11.15 14.72 2.76
GenSoFNN-CRI22.38 15.66 16.68 12.53 21.28 19.48 15.50 12.68 17.95 16.04 17.02 3.78

network (RBF); and (4) the Generic Self-Organizing scenario will result in speaker models that are heavily
Fuzzy Neural Network with the Compositional Rule biased towards the rejection of the impostors’ speech
of Inference scheme (GenSoFNN-CRI) [18]. Thesamples. Consequently, the performances of the
network size of CMAC has been defined@sells per resultant MLP-based speaker verification system are
dimension to maintain a fair performance comparisorseverely impaired by the large Type | errors.
with PSECMAC. The MLP has a predefined structure
that consists of six input, thirteen hidden and oneTo investigate how the data composition of the
output nodes respectively while the RBF networktraining set affects the performances of the speaker
is initialized to contain100 hidden layer nodes. Vverification systems, the set of simulations on the
Meanwhile, the parameters of the GenSoFNN-CRIbenchmarked architectures is subsequently repeated
model has been empirically optimized. with a "balanced” training scenario. In the "balanced”
training scenario, the training sets of the three CV
Table 1 summarizes the average frame-by-frame EERroups of each speaker are modified by duplicating
values achieved by the various systems. Fronthe positive training samples (i.e. samples belonging
Table 1, one can observe that the PSECMAC networko the authentic class) until the number of authentic
achieved the best verification performances amongamples equals the number of impostor samples. The
all the benchmarked systems. PSECMAC reportgesting sets of the CV groups remain unchanged.
the lowest average EER of approximatel§% and Table 2 tabulates the speaker verification performances
a EER standard deviation of onB.72% across all of the benchmarked architectures for the "balanced”
the evaluated speakers, thereby demonstrating thteaining scenario. From Table 2, it is again evident
accuracy and consistency of its speaker models. Ththat the PSECMAC-based speaker verification system
PSECMAC speaker model also outperformed that otomprehensively outperformed all the benchmarked
the benchmarked CMAC network. The degradedsystems based on the average EER values across
speaker verification performances of CMAC are largelyall the evaluated speakers. The results tabulated in
due to the uniform allocation of its memory cells. The Tables 1 and 2 show that the “balanced” training
rigid uniform partitioning of the input space limits the scenario improves the average EER performances of
modeling accuracy of the CMAC network and thusthe PSECMAC-based speaker verification system by
leads to a suboptimal performance. From the resultapproximately5.9%((12.08 — 11.36)/12.08). The
tabulated in Table 1, one can also observe that theverall improvement in the verification accuracy of
MLP network reports the poorest speaker verificationthe PSECMAC-based speaker verification system can
performances with an average EER of approximatelhbe attributed to the balanced data distribution of the
28%. The inferior performances of the MLP-based positive (actual) and negative (impostor) samples in
speaker verification system may be attributed to thahe training set, which allows for better memory cell
use of the "unbalanced” training scenario, where theallocations in the resultant trained PSECMAC speaker
number of impostor samples in the training set farmodels. This generally results in the higher modeling
exceeds the number of authentic ones. Machinaccuracies of the speaker models that subsequently
learning research has long established that the MLP iganslate to improved verification performances.
a connectionist network that employs global learning,
whereby each presentation of a training sample adaptghe simulation results in Tables 1 and 2 also showed
the weights of its entire network structure. Thus,that the average EER values of the MLP network

training the MLP with the “unbalanced” training improved by39.6%((28.08 —16.95)/28.08) under the
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"balanced” training scenario, thereby demonstrating
the sensitivity of the MLP-based speaker models
towards the structure of the training sets. Slight
improvements were also noted for the RBF-based [6]
speaker verification systems and these can be attributed
to the balanced data distribution of the two classes

in the training sets. On the other hand, minor
degradations in the performances of the CMAC and
GenSoFNN-CRI-based speaker verification systems|7]
suggest that the duplicated positive samples introduced
to the training sets have a slight detrimental effect
on the performances of the corresponding speaker
models. This may be due to the inherent learning and
computational process of these two networks.

5 Conclusion

This paper presented a cerebellar-based approach to
the text-dependent speaker verification problem. Thel[€]
proposed speaker verification system employs
the novel PSECMAC network, which is a [10]
neurologically-inspired computational model of
the human cerebellum, to model the speaker-specific
characteristics of the human voice via the MFCC
values extracted from the sampled voice segments.
This study was mativated by the physiology of the[11]
human auditory system and the psychology of the
human perception to acoustic sounds, which facilitate
the human innate ability to accurately perform the
speaker recognition process in everyday life. [12]

The proposed PSECMAC-based speaker verification
system was subsequently employed to verify the
voice inputs of ten adult speakers. The verification
performances of the PSECMAC speaker models werg, 3
evaluated against those of the basic CMAC an
GenSoFNN networks as well as the classical machine
learning models of MLP and RBF networks. The
experimental results had sufficiently demonstrated the
superior accuracy of the PSECMAC-based speakeil4]
verification system to the benchmarked models.
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