

Figure 1. Multiple dependent outputs obtained by Gaussian white noise
convolved with smoothing kernels.

Dependent Gaussian Process Models for MIMO
Nonlinear Dynamical Systems using PSO

Gang Cao and Edmund M-K Lai
School of Engineering and Advanced Technology

Massey University
Auckland, New Zealand

Email: {g.cao, elai}@massey.ac.nz

Abstract—We explore the use of particle swarm optimization
(PSO) to learn the hyperparameters for Dependent Gaussian
processes (DGPs) which producing a convolution function to
establish dependencies between outputs. We employ this
convolution function to directly compute the predictive outputs
without calculating covariance matrix. This differentiates our
method from other hyperparameters learning evolutionary
algorithms. We show experimental results of proposed
approaches for single and multiple outputs.

Keywords-dependent Gaussian processes; particle swarm
optimization; nonlinear dynamic systems

I. INTRODUCTION

Gaussian process (GP) is a probabilistic, non-parametric
method that has been used to model various non-linear
dynamic processes [1]. It has the advantage that the variance
of the outputs can naturally be obtained so that the performance
can easily be assessed. While other parametric methods such
as artificial neural networks and fuzzy models approximate a
system through a set of selected basis functions, GPs model the
real relationships between measured data [2]. The key in
obtaining good GP models lies in the estimation of the
hyperparameters governing the GPs.

So far, GP has mostly been applied to model multiple input
single output (MISO) systems [3]. For multiple input multiple
output (MIMO) systems, one of the important issues is to
capture the auto-covariance and the cross-covariance between
outputs. Although there are some known positive definite
auto-covariance functions, it is difficult to find cross-
covariance functions that result in positive definite covariance
matrices. In [3], dependent Gaussian processes (DGPs) have
been proposed as an alternative formulation of the covariance
function. It treats GPs as white noise sources convolved with
smoothing kernels and therefore can also be viewed as a kind
of convolved GPs [4]. The hyperparameters of the DGPs can
be learnt using a conjugate gradient method with the maximum
likelihood (ML) or the maximum a posteriori (MAP) criterion.
However, the performance of conjugate gradient highly
depends on the initial values, especially in high dimensional
objective functions with multiple local minima. The
computational burden also increases significantly with the
dimension of the problem.

In this paper, we explore the use of particle swarm
optimization (PSO) to learn the hyperparameters for DGPs.
There have been some attempts to use evolutionary methods
for hyperparameters learning problem [2, 5]. However, they
have not been applied to models involving DPGs before.

The rest of this paper is organized as follows. In Section II,
the concept of DPG is briefly reviewed. How PSO is used for
learning the hyperparameters is described in detail in Section
III. Section IV presents the results for specific examples.
Finally, Section V concludes the paper with indications of
some future research directions.

II. DEPENDENT GAUSSIAN PROCESSES

This brief review of DPG mostly follows that in [4].

The output ݕሺݐሻ of a linear time-invariant system with an
impulse response ݄ሺݐሻ and input ݔሺݐሻ can be obtained by linear
convolution:

         *y t h t x t h t x d  



   (1)

If the input is Gaussian white noise and the system is stable,
then the output is Gaussian. A system with M inputs and N
dependent outputs can be modelled by a set of ܯ ൈܰ impulse
responses as shown in Fig.1. All the outputs are obtained from
Gaussian white noises convolved with the relevant smoothing
kernels. The n-th output is given by (2).

3

     
1

M

n mn m
m

y t h t x d  





   (2)

Dependencies exist between the output processes because
they are obtained from a common input dataset. In this way,
the problem of estimating positive definite covariance
functions has been transformed into one of estimating impulse
responses.

The impulse responses can have various different forms as
long as the filter is stable. In this work, Gaussian responses of
the form

      1
exp

2
T

mn mn mn mn mnh
     
 

s A sv s μ μ (3)

will be used. Here ܞ௠௡ א Թ, ܛ, ௠௡ࣆ א Թௗ, ݀ is the dimension
of the problem and ࡭௠௡ is a ݀ ൈ ݀ positive definite matrix. So
the functions ܿݒ݋௜௝

Y ሺܛሻ that define the auto-covariance (݅ ൌ ݆)
and cross-covariance (݅ ് ݆) between outputs ݅ and ݆ , for a
given separation s between arbitrary inputs can be expressed as

     TY 1
exp

2ijcov K
     
 

s s μ s μ (4)

where ∑ ൌ࢏࢓ۯሺ࢏࢓ۯ ൅ ࣆ∆ ,࢐࢓ۯ࢐ሻିଵ࢓ۯ ൌ ௠௜ࣆ െ ௠௝andࣆ

  22
d

mi mj

mi mj

v v
K




A A

So a covariance matrix from these functions can be
obtained as

   

   

Y Y
1 1 1

Y Y
1

j

i i j

ij i j ij i jn

ij

ij in j ij in jn

cov x x cov x x

cov x x cov x x

  
 
   
    



  



C (5)

The log-likelihood is given by

T 11 1 W
log log2π

2 2 2
   y yC CL (6)

where ݊௜ denotes the number of observation in i-th dataset,
W ൌ ∑ ݊௜

ே
௜ୀଵ denotes the total number of observations and

ܡ ൌ ሾ൫ݕଵଵ ڮ,ଵ௡భ൯ݕڮ , ൫ݕ௜ଵ ڮ,௜௡೔൯ݕڮ , ሺݕேଵ ே௡ಿሻሿݕڮ
T.

Similar to single output GP models, the predictive
distribution at a test point כܠ on the i-th output is Gaussian with
mean ݉ሺכܠሻ and variance ݒሺכܠሻ given by

T 1
*()m Cx k y (7)

1() = κ-*v C Tx k k (8)

where

 Y 2 2 2κ 0ii i i icov v      (9)

T T T T
1 , ,i N

   k k k k  (10)

   T Y Y
* 1 *, ,

ji ij j ij jncov x cov x     
k x x (11)

III. PARTICLE SWARM OPTIMIZATION

Many optimization problems involve objective functions
which consist of multiple local minima. Gradient descent
methods are not effective in such cases as the algorithm can get
stuck in a local minimum. One effective approach for solving
such optimization problems is known as particle swarm
optimization (PSO). It was first introduced in 1995 [6]. PSO
solves an optimization problem by simulating the social
behaviour of organisms. It consists of many particles where
each individual one represents a solution to the problem. The
particles can move around in the search space and optimize its
position according to its own as well as the whole population’s
experience.

Assuming the search space is ܦ-dimensional and the i-th
particle of the swarm is denoted by ݔ௜ ൌ ሼݔ௜ଵ,ڮ , ௜஽ሽ. In theݔ
t-th epoch, the position and velocity of every particle would be
respectively updated by

1t t t
i i ix x v   (12)

 1
1 1 2 2 ()t t t t t t t

i i i i i iv v c r pbest x c r gbest x      (13)

where ߱ is the inertia factor, ܿଵ and ܿଶ are the acceleration
coefficients, ଵݎ and ଶݎ are two random numbers which are
uniformly distributed in the range ሾ0,1ሿ . Also, in (13),
௜ݐݏܾ݁݌ ൌ ሼݐݏܾ݁݌௜ଵ,ڮ , ௜஽ሽݐݏܾ݁݌ , and ܾ݃݁ݐݏ denote the best
indivdual position and the best global position respectively.
The best individual position in next epoch is updated by

   1 1
1

, if ?

otherwis, e

t t t
i i it

i
t
i

x f x f pbest
pbest

pbest

 


  


 (14)

where ࢌሺ·ሻ denotes the fitness function. The best global
position in next epoch is updated by

    1 1,t t t
igbest argmin f gbest f pbest  (15)

The Inertia factor ߱ plays an important role in PSO. In
practice, a larger ߱ is used at the beginning of the search to
achieve better global search ability. A smaller value of ߱ is
used towards the end of the optimization to provide better local
search ability. The inertia factor in each epoch is obtained by

2()exp ()t
end start end

max

t
k

T
   

 
     

 
 (16)

where ߱௦௧௔௥௧ and ߱௘௡ௗ denote the pre-determined start and end
values of the inertia factor respectively. ݇ is a control factor
controlling the shape of function, and ௠ܶ௔௫ is the maximum
epoch number.

4

Figure 2. Flow chart of hyperparameters learning using PSO. The
dashed line and grey area show other evalution approach different with

our method.

IV. HYPERPARAMETER LEARNING USING PSO

Based on the DGP introduced in Section II, a set of
hyperparameters ࣂ ൌ ሼ࢜௠௡, ,௠௡ࣆ ௠௡ ሽ can be defined for the࡭
Gaussian filters. For real-world problems, a noise term,
,ሻ~ࣨሺ0ݐ௡ሺࣁ ଶሻ, is usually added to the right hand side of (2)ߪ
to account for measurement errors and other noises. However,
this noise term will not be included as part of the
hyperparameters that are to be optimized. In order to reduce
the number of hyperparameters, we further assume that the
impulse responses ݄௠௡ are the same for each output.
Therefore, the hyperparameters become ࣂ ൌ ሼ࢜௡, ,௡ࣆ ௡ ሽ, for࡭
݊ ൌ 1,… , N where N is the total number of outputs. We shall
also assume that ࡭௡ ൌ expሺ࣐௡ሻ . The training dataset ࣞ ൌ
ሼࣞଵࣞڮNሽ, where ࣞ୧ ൌ ሼܠ௜,ݕ௜ሽ௜ୀଵ

௡೔ is composed of training data
for each output.

To learn these hyperparameters using PSO, the particle and
fitness function need to be defined. In our PSO algorithm,
each specific set of hyperparameters is treated as a particle. The
search range of a particle plays an important role in the
performance. However, there is no systematic method to
determine this range; it is entirely based on trial and error. In
our implementation, a particle is initialized based on following
Gaussian distributions:

2(1, 0.5)~ Nnv (17)

2(1, 0.5)n ~ Nμ (18)

2(3.5, 1)n ~ Nφ (19)

Therefore, the searching range of each individual
hyperparameter is in the same range as its distribution.

The mean squared error (MSE)

2

1

1
i

i

L

L
MSE e



  (20)

will be used as the fitness function, where ܮ is the number of
data samples and e is instantaneous error between the actual
and the predictive outputs. The predictive outputs are
computed from (2) without the need for the covariance matrix.
This differentiates our method from other hyperparameters
learning evolutionary algorithms where the covariance matrix
needs to be computed in order to assess the performance of an
individual particle in each epoch.

Fig.2 shows the flow chart of hyperparameters learning
using PSO. Firstly, PSO algorithm is initialized. Then in each
epoch, several particles are generated randomly. The position
and velocity of each particle is updated according to (12) and
(13) respectively. The fitness of the updated particles is
evaluated by (20) to find the particle with the best fitness. The
algorithm terminates when it reaches the maximum number of
epochs or the desired error. The optimal set of hyperparameters
will be used to compute the covariance matrix.

V. EXPERIMENTS AND RESULTS

The method outlined above is tested using two examples.
The first one is a single output nonlinear dynamical system
while method the second one is a multiple output application
for the prediction of the mechanical properties of steel.

The PSO parameters used in both examples are the same:
particle population is 50; maximum iteration number ௠ܶ௔௫ is
2000; inertia factor ߱௦௧௔௥௧and ߱௘௡ௗ are 0.4 and 0.9 respectively;
two acceleration coefficients are both 1.49445; control factor ݇
is 10; the desired error of fitness function is 1e-9.

A. Nonlinear Dynamic System Modeling

The single-output nonlinear dynamic system is defined as
follows:

2() 0.893 (1) 0.037 (1) 0.05 (2)

0.05 (1) (1) 0.157 (1)

y k y k y k y k

u k y k u k

     
     (21)

where ݑ is the input signal of system and ݕ is the output signal
of system. For this system, we define ࢞ ൌ ሾݑሺ݇ െ 1ሻ, ሺ݇ݕ െ
1ሻ, ሺ݇ݕ െ 2ሻሿ and ݕ ൌ ሺ݇ሻݕ . Our task here is modeling a

5

Figure 3. Comparison between predictive outputs and test outputs

0 2 4 6 8 10 12 14 16 18 20
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ytest
ypre

Figure 5. The reusluts of mechanical proporties prediction using DGPs
with a PSO learning method

0 5 10 15 20
0

2

4
x 10

6

0 5 10 15 20
0

5
x 10

6

0 5 10 15 20
0

5

10
x 10

5

realSigS
preSigS

realSigB
preSigB

realDelta5
preDeltaS

multiple inputs and single output nonlinear dynamic system
using Dependent Gaussian processes. Separate training and
test data are generated by simulation assuming ࢛~࣯ሺെ2, 4ሻ.
The training data consist of 34 samples and the test data have
20 samples. To evaluate the performance of particles, we
simply added white noise with variance ߪଶ ൌ 1 to the output
convolution of (2) and compute the corresponding MSE by
(20).

In this experiment, the optimized hyperparameters obtained
are: ࣂ୭୮୲୧୫ୟ୪ = {1.1574, -0.1042, 0.3308}.

Based on these hyperparameters, the covariance matrix ࡯ is
computed by (4), and the predicted outputs is computed by (7).
Fig.3 shows the difference between 20 predicted outputs and
the corresponding test outputs. Fig.4 shows the absolute error
between predicted and test outputs. All 20 predictive absolute
errors are less than 0.05. It shows that the model error is
reasonably small.

B. Steel mechanical properties prediction

The second example involves real data obtained from
industrial steel production. The data consist of the measured
values of chemical elements (C, Si, Mn, P, S, V), process

parameters (slab thickness and final temperature) and
mechanical properties (yield strength ௦ߪ , tensile strength
 ହ). The goal is to relate these mechanicalߜ ௕ and elongationߪ
properties to the 6 chemical elements and the 2 process
parameters. The inputs are therefore given by x ൌ
ሾݐܥ஼, ,௦௜ݐܥ ,௠௡ݐܥ ,௣ݐܥ ,௦ݐܥ ,௩ݐܥ ܶ݇௦௟௔௕, ௙ܶ௜௡௔௟ሿ , where ݐܥ஼
denotes C element content for example, ܶ݇௦௟௔௕ denotes slab
thickness and ௙ܶ௜௡௔௟ denotes the final temperature. The three
outputs are ݕ ൌ ሾ ߪ௦ , ,௕ߪ ହሿ. Therefore, the hyperparametersߜ
are ࣂ ൌ ሾݒଵ, ,ଶݒ ,ଷݒ ,ଵߤ ,ଶߤ ,ଷ,߮ଵߤ ߮ଶ, φଷሿ.

The whole dataset consists of 84 samples collected from a
steel-making factory. The range of the inputs and outputs is
quite different for each parameter. We normalize all training
and test data to a range of [0.1, 0.9]. The preprocessed dataset
is divided into four parts – 3 training datasets ௧௥௔௜௡ܦ ൌ
ሼܦଵ, ,ଶܦ ௧௘௦௧ܦ ଷሽ, one for each output, and a test datasetܦ ൌ
൛ݔ௝, ௝ൟ௝ୀଵݕ

ଶ଴
. Similar to the first experiment, we simply added

white noise with variance ߪଵଶ ൌ ଶߪ
ଶ ൌ ଷߪ

ଶ ൌ 1 to the right hand
side of (2) and compute the corresponding MSE by (20).

It turns out that we are unable to compare the predictive
outputs to the test outputs because the resultant covariance
matrix is ill conditioned. The optimization was repeated several
times with different PSO parameters. However, the results are
similar. One possible reason is that the matrix A in (3) may not
be positive definite during the optimization. This matrix plays
an important role because not only the covariance matrix
depends on it, it also influences hyperparameter learning in the
PSO algorithm. A second possible reason is that we have
assumed impulse responses ݄௠௡ for same output are the same.
This restriction may produce a poorly optimized set of
hyperparameters, which in turn produces a poor covariance
matrix.

Figure 4. Comparison between predictive outputs and test outputs

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

preError

6

VI. CONCLUSIONS

We explored the use of PSO to learn the hyperparameters
for DGPs. Compared with other evolutionary learning
approach for hyperparameters, the performance of each
generation of hyperparameters can be directly evaluated
because the outputs can be obtained by Gaussian white noise
convolved with smoothing kernels in DGPs. Our experiments
show that our approach works well for a single-output problem,
but is unable to obtain a proper model for a multiple output one.
We have suggested possible reasons for that. Therefore, as
future work, we will focus on solving this problem. After that,
our method for learning hyperparameters will be compared
with others. Finally, we also will improve our hyperparameters
learning method so as to improve its accuracy and stability.

REFERENCES
[1] G. Gregor and G. Lightbody, “Gaussian process approach for modelling

of nonlinear systems,” Engineering Applications of Artificial
Intelligence, vol. 22, no. 4–5, pp. 522–533, Jun. 2009.

[2] D. Petelin, B. Filipic, and J. Kocijan, “Optimization of Gaussian process
models with evolutionary algorithms,” Adaptive and Natural Computing
Algorithms,vol.6593, pp. 420–429, 2011.

[3] P. Boyle and M. Frean, “Dependent gaussian processes,” Advances in
neural information processing systems, Vol. 17, pp. 217–224, 2005.

[4] M. A. Alvarez and N. D. Lawrence, “Computationally Efficient
Convolved Multiple Output Gaussian Processes.,” Journal of Machine
Learning Research, vol. 12, no. 5, pp. 1459–1500, 2011.

[5] F. Zhu, C. Xu, and G. Dui, “Particle swarm Hybridize with Gaussian
Process Regression for displacement prediction,” IEEE Fifth
International Conference on Bio-Inspired Computing: Theories and
Applications (BIC-TA), pp. 522–525, 2010.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948,
1995

7

