
 

Figure 1.  Multiple dependent outputs obtained by Gaussian white noise 
convolved with smoothing kernels. 
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Abstract—We explore the use of particle swarm optimization 
(PSO) to learn the hyperparameters for Dependent Gaussian 
processes (DGPs) which producing a convolution function to 
establish dependencies between outputs. We employ this 
convolution function to directly compute the predictive outputs 
without calculating covariance matrix. This differentiates our 
method from other hyperparameters learning evolutionary 
algorithms. We show experimental results of proposed 
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I.  INTRODUCTION 

Gaussian process (GP) is a probabilistic, non-parametric 
method that has been used to model various non-linear 
dynamic processes [1].  It has the advantage that the variance 
of the outputs can naturally be obtained so that the performance 
can easily be assessed.  While other parametric methods such 
as artificial neural networks and fuzzy models approximate a 
system through a set of selected basis functions, GPs model the 
real relationships between measured data [2].  The key in 
obtaining good GP models lies in the estimation of the 
hyperparameters governing the GPs. 

So far, GP has mostly been applied to model multiple input 
single output (MISO) systems [3].  For multiple input multiple 
output (MIMO) systems, one of the important issues is to 
capture the auto-covariance and the cross-covariance between 
outputs.  Although there are some known positive definite 
auto-covariance functions, it is difficult to find cross-
covariance functions that result in positive definite covariance 
matrices.  In [3], dependent Gaussian processes (DGPs) have 
been proposed as an alternative formulation of the covariance 
function.  It treats GPs as white noise sources convolved with 
smoothing kernels and therefore can also be viewed as a kind 
of convolved GPs [4]. The hyperparameters of the DGPs can 
be learnt using a conjugate gradient method with the maximum 
likelihood (ML) or the maximum a posteriori (MAP) criterion. 
However, the performance of conjugate gradient highly 
depends on the initial values, especially in high dimensional 
objective functions with multiple local minima. The 
computational burden also increases significantly with the 
dimension of the problem. 

In this paper, we explore the use of particle swarm 
optimization (PSO) to learn the hyperparameters for DGPs. 
There have been some attempts to use evolutionary methods 
for hyperparameters learning problem [2, 5].  However, they 
have not been applied to models involving DPGs before.   

The rest of this paper is organized as follows.  In Section II, 
the concept of DPG is briefly reviewed.  How PSO is used for 
learning the hyperparameters is described in detail in Section 
III. Section IV presents the results for specific examples.
Finally, Section V concludes the paper with indications of 
some future research directions. 

II. DEPENDENT GAUSSIAN PROCESSES

This brief review of DPG mostly follows that in [4]. 

The output ݕሺݐሻ of a linear time-invariant system with an 
impulse response ݄ሺݐሻ and input ݔሺݐሻ can be obtained by linear 
convolution: 

         *y t h t x t h t x d  



   (1)  

If the input is Gaussian white noise and the system is stable, 
then the output is Gaussian.  A system with M inputs and N 
dependent outputs can be modelled by a set of ܯ ൈܰ impulse 
responses as shown in Fig.1. All the outputs are obtained from 
Gaussian white noises convolved with the relevant smoothing 
kernels.  The n-th output is given by (2). 
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Dependencies exist between the output processes because 
they are obtained from a common input dataset. In this way, 
the problem of estimating positive definite covariance 
functions has been transformed into one of estimating impulse 
responses.  

The impulse responses can have various different forms as 
long as the filter is stable.  In this work, Gaussian responses of 
the form 
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exp

2
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will be used. Here ܞ௠௡ א Թ, ܛ, ௠௡ࣆ א Թௗ, ݀ is the dimension 
of the problem and ࡭௠௡ is a ݀ ൈ ݀ positive definite matrix.  So 
the functions ܿݒ݋௜௝

Y ሺܛሻ that define the auto-covariance (݅ ൌ ݆) 
and cross-covariance (݅ ് ݆ ) between outputs ݅  and ݆ , for a 
given separation s between arbitrary inputs can be expressed as 
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So a covariance matrix from these functions can be 
obtained as 
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The log-likelihood is given by 

T 11 1 W
log log2π

2 2 2
   y yC CL  (6) 

where ݊௜  denotes the number of observation in i-th dataset, 
W ൌ ∑ ݊௜

ே
௜ୀଵ  denotes the total number of observations and 

ܡ ൌ ሾ൫ݕଵଵ ڮ,ଵ௡భ൯ݕڮ , ൫ݕ௜ଵ ڮ,௜௡೔൯ݕڮ , ሺݕேଵ ே௡ಿሻሿݕڮ
T. 

Similar to single output GP models, the predictive 
distribution at a test point כܠ on the i-th output is Gaussian with 
mean ݉ሺכܠሻ and variance ݒሺכܠሻ given by 

T 1
*( )m Cx k y          (7) 
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III. PARTICLE SWARM OPTIMIZATION

Many optimization problems involve objective functions 
which consist of multiple local minima.  Gradient descent 
methods are not effective in such cases as the algorithm can get 
stuck in a local minimum.  One effective approach for solving 
such optimization problems is known as particle swarm 
optimization (PSO).  It was first introduced in 1995 [6].  PSO 
solves an optimization problem by simulating the social 
behaviour of organisms. It consists of many particles where 
each individual one represents a solution to the problem.  The 
particles can move around in the search space and optimize its 
position according to its own as well as the whole population’s 
experience. 

Assuming the search space is ܦ-dimensional and the i-th 
particle of the swarm is denoted by ݔ௜ ൌ ሼݔ௜ଵ,ڮ ,  ௜஽ሽ.  In theݔ
t-th epoch, the position and velocity of every particle would be 
respectively updated by 

1t t t
i i ix x v   (12)
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i i i i i iv v c r pbest x c r gbest x       (13) 

where ߱  is the inertia factor,  ܿଵ and  ܿଶ  are the acceleration 
coefficients, ଵݎ  and ଶݎ   are two random numbers which are 
uniformly distributed in the range ሾ0,1ሿ .  Also, in (13), 
௜ݐݏܾ݁݌ ൌ ሼݐݏܾ݁݌௜ଵ,ڮ , ௜஽ሽݐݏܾ݁݌ , and ܾ݃݁ݐݏ  denote the best 
indivdual position and the best global position respectively. 
The best individual position in next epoch is updated by 

   1 1
1

, if ?

otherwis, e

t t t
i i it

i
t
i

x f x f pbest
pbest

pbest

 


  


 (14) 

where ࢌሺ·ሻ  denotes the fitness function.  The best global 
position in next epoch is updated by 

    1 1,t t t
igbest argmin f gbest f pbest   (15) 

The Inertia factor  ߱  plays an important role in PSO. In 
practice, a larger ߱ is used at the beginning of the search to 
achieve better global search ability. A smaller value of ߱ is 
used towards the end of the optimization to provide better local 
search ability.   The inertia factor in each epoch is obtained by 

2( )exp ( )t
end start end

max

t
k

T
   

 
     

 
 (16) 

where ߱௦௧௔௥௧ and ߱௘௡ௗ denote the pre-determined start and end 
values of the inertia factor respectively.  ݇ is a control factor 
controlling the shape of function, and ௠ܶ௔௫  is the maximum 
epoch number. 

4



 

Figure 2.  Flow chart of hyperparameters learning using PSO. The 
dashed line and grey area show other evalution approach different with 

our method. 

IV. HYPERPARAMETER LEARNING USING PSO

Based on the DGP introduced in Section II, a set of 
hyperparameters ࣂ ൌ ሼ࢜௠௡, ,௠௡ࣆ  ௠௡ ሽ can be defined for the࡭
Gaussian filters.  For real-world problems, a noise term, 
,ሻ~ࣨሺ0ݐ௡ሺࣁ  ଶሻ, is usually added to the right hand side of (2)ߪ
to account for measurement errors and other noises.  However, 
this noise term will not be included as part of the 
hyperparameters that are to be optimized.  In order to reduce 
the number of hyperparameters, we further assume that the 
impulse responses ݄௠௡  are the same for each output. 
Therefore, the hyperparameters become  ࣂ ൌ ሼ࢜௡, ,௡ࣆ  ௡ ሽ, for࡭
݊ ൌ 1,… , N where N is the total number of outputs.  We shall 
also assume that ࡭௡ ൌ expሺ࣐௡ሻ . The training dataset ࣞ ൌ
ሼࣞଵࣞڮNሽ, where ࣞ୧ ൌ ሼܠ௜,ݕ௜ሽ௜ୀଵ

௡೔  is composed of training data
for each output. 

To learn these hyperparameters using PSO, the particle and 
fitness function need to be defined.  In our PSO algorithm, 
each specific set of hyperparameters is treated as a particle. The 
search range of a particle plays an important role in the 
performance. However, there is no systematic method to 
determine this range; it is entirely based on trial and error.  In 
our implementation, a particle is initialized based on following 
Gaussian distributions: 

2(1, 0.5 )~ Nnv    (17) 

2(1, 0.5 )n ~ Nμ    (18) 

2(3.5, 1 )n ~ Nφ    (19) 

Therefore, the searching range of each individual 
hyperparameter is in the same range as its distribution.  

The mean squared error (MSE) 

2

1

1
i

i

L

L
MSE e



  (20) 

will be used as the fitness function, where  ܮ is the number of 
data samples and e is instantaneous error between the actual 
and the predictive outputs. The predictive outputs are 
computed from (2) without the need for the covariance matrix. 
This differentiates our method from other hyperparameters 
learning evolutionary algorithms where the covariance matrix 
needs to be computed in order to assess the performance of an 
individual particle in each epoch. 

Fig.2 shows the flow chart of hyperparameters learning 
using PSO. Firstly, PSO algorithm is initialized. Then in each 
epoch, several particles are generated randomly.  The position 
and velocity of each particle is updated according to (12) and 
(13) respectively. The fitness of the updated particles is 
evaluated by (20) to find the particle with the best fitness.  The 
algorithm terminates when it reaches the maximum number of 
epochs or the desired error. The optimal set of hyperparameters 
will be used to compute the covariance matrix. 

V. EXPERIMENTS AND RESULTS 

The method outlined above is tested using two examples. 
The first one is a single output nonlinear dynamical system 
while method the second one is a multiple output application 
for the prediction of the mechanical properties of steel. 

The PSO parameters used in both examples are the same: 
particle population is 50; maximum iteration number ௠ܶ௔௫  is 
2000; inertia factor ߱௦௧௔௥௧and ߱௘௡ௗ are 0.4 and 0.9 respectively; 
two acceleration coefficients are both 1.49445; control factor ݇ 
is 10; the desired error of fitness function is 1e-9. 

A. Nonlinear Dynamic System Modeling 

The single-output nonlinear dynamic system is defined as 
follows: 

2( ) 0.893 ( 1) 0.037 ( 1) 0.05 ( 2)

0.05 ( 1) ( 1) 0.157 ( 1)

y k y k y k y k

u k y k u k

     
       (21) 

where ݑ is the input signal of system and ݕ is the output signal 
of system. For this system, we define ࢞ ൌ ሾݑሺ݇ െ 1ሻ, ሺ݇ݕ െ
1ሻ, ሺ݇ݕ െ 2ሻሿ  and ݕ ൌ ሺ݇ሻݕ . Our task here is modeling a 
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Figure 3.  Comparison between predictive outputs and test outputs 
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Figure 5.  The reusluts of mechanical proporties prediction using DGPs 
with a PSO learning method 
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multiple inputs and single output nonlinear dynamic system 
using Dependent Gaussian processes.  Separate training and 
test data are generated by simulation assuming  ࢛~࣯ሺെ2, 4ሻ. 
The training data consist of 34 samples and the test data have 
20 samples. To evaluate the performance of particles, we 
simply added white noise with variance ߪଶ ൌ 1 to the output 
convolution of (2) and compute the corresponding MSE by 
(20).  

In this experiment, the optimized hyperparameters obtained 
are: ࣂ୭୮୲୧୫ୟ୪ = {1.1574, -0.1042, 0.3308}. 

Based on these hyperparameters, the covariance matrix ࡯ is 
computed by (4), and the predicted outputs is computed by (7). 
Fig.3 shows the difference between 20 predicted outputs and 
the corresponding test outputs.  Fig.4 shows the absolute error 
between predicted and test outputs. All 20 predictive absolute 
errors are less than 0.05.  It shows that the model error is 
reasonably small. 

B. Steel mechanical properties prediction 

The second example involves real data obtained from 
industrial steel production.  The data consist of the measured 
values of chemical elements (C, Si, Mn, P, S, V), process 

parameters (slab thickness and final temperature) and 
mechanical properties (yield strength ௦ߪ  , tensile strength 
 ହ).  The goal is to relate these mechanicalߜ ௕ and elongationߪ 
properties to the 6 chemical elements and the 2 process 
parameters. The inputs are therefore given by  x ൌ
ሾݐܥ஼, ,௦௜ݐܥ ,௠௡ݐܥ ,௣ݐܥ ,௦ݐܥ ,௩ݐܥ ܶ݇௦௟௔௕, ௙ܶ௜௡௔௟ሿ , where ݐܥ஼ 
denotes C element content for example, ܶ݇௦௟௔௕  denotes slab 
thickness and ௙ܶ௜௡௔௟ denotes the final temperature.  The three 
outputs are  ݕ ൌ ሾ ߪ௦ , ,௕ߪ   ହሿ. Therefore, the hyperparametersߜ
are ࣂ ൌ ሾݒଵ, ,ଶݒ ,ଷݒ ,ଵߤ ,ଶߤ ,ଷ,߮ଵߤ ߮ଶ, φଷሿ.   

The whole dataset consists of 84 samples collected from a 
steel-making factory.  The range of the inputs and outputs is 
quite different for each parameter.  We normalize all training 
and test data to a range of [0.1, 0.9].  The preprocessed dataset 
is divided into four parts – 3 training datasets ௧௥௔௜௡ܦ  ൌ
ሼܦଵ, ,ଶܦ ௧௘௦௧ܦ ଷሽ, one for each output, and a test datasetܦ ൌ
൛ݔ௝, ௝ൟ௝ୀଵݕ

ଶ଴
.  Similar to the first experiment, we simply added 

white noise with variance ߪଵଶ ൌ ଶߪ
ଶ ൌ ଷߪ

ଶ ൌ 1 to the right hand 
side of (2)  and compute the corresponding MSE by (20). 

It turns out that we are unable to compare the predictive 
outputs to the test outputs because the resultant covariance 
matrix is ill conditioned. The optimization was repeated several 
times with different PSO parameters.  However, the results are 
similar.  One possible reason is that the matrix A in (3) may not 
be positive definite during the optimization.  This matrix plays 
an important role because not only the covariance matrix 
depends on it, it also influences hyperparameter learning in the 
PSO algorithm. A second possible reason is that we have 
assumed impulse responses ݄௠௡ for same output are the same. 
This restriction may produce a poorly optimized set of 
hyperparameters, which in turn produces a poor covariance 
matrix.  

Figure 4.  Comparison between predictive outputs and test outputs 
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VI. CONCLUSIONS

We explored the use of PSO to learn the hyperparameters 
for DGPs.  Compared with other evolutionary learning 
approach for hyperparameters, the performance of each 
generation of hyperparameters can be directly evaluated 
because the outputs can be obtained by Gaussian white noise 
convolved with smoothing kernels in DGPs.  Our experiments 
show that our approach works well for a single-output problem, 
but is unable to obtain a proper model for a multiple output one. 
We have suggested possible reasons for that. Therefore, as 
future work, we will focus on solving this problem.  After that, 
our method for learning hyperparameters will be compared 
with others. Finally, we also will improve our hyperparameters 
learning method so as to improve its accuracy and stability.  
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