
Dynamics Comparison of TCP Veno and Reno

C. L. Zhang, C. P. Fu, Ma-Tit Yap, C. H. Foh, K. K. Wong, C. T. Lau, M. K. Lai
School of Computer Engineering

Nanyang Technological University, Singapore

{P146199053, ascpfu, astyap, aschfoh, askkwong, asctlau, asmklai}@ntu.edu.sg

Abstract— TCP Veno was recently proposed to eliminate TCP
performance suffering from wireless links. Real network
measurements and live Internet results have validated Veno’s
significant throughput improvement in wireless networks and its
harmonious co-existence with TCP Reno connections in wired
networks. In this paper, we demonstrate the out-of-phase
synchronization of Veno in one-way traffic, as opposed to the in-
phase synchronization of Reno. The detailed studies of these
behaviors and its interaction with Reno are reported. Moreover,
our careful study shows that this out-of-phase synchronization
benefits network link utilization, and reduces the occurrence of
congestion loss.

Keywords-TCP Veno; TCP Reno; out-of-phase; in-phase;
synchronization

I. INTRODUCTION
TCP is a reliable connection-oriented protocol that

implements flow control by means of a sliding window
algorithm [3]. TCP Reno, which makes use of slow start and
congestion avoidance algorithms to adjust the window size, is
widely deployed in the Internet. During the slow start phase, its
window is incremented for each ack received until packet loss
is experienced, at which point the window is halved and then a
linear increase algorithm takes over until further packet loss is
experienced. This additive increase and multiplicative decrease
mechanism leads to periodic oscillations in the congestion
window, round trip delay and queue length of the bottleneck
buffer in the path.

However, the assumption in TCP Reno that packet loss
implies network congestion may not apply to wireless
networks, in which packet loss may be induced by noise, link
error or reasons other than network congestion. Not making an
attempt to distinguish between random and congestion losses,
TCP Reno is equally sensitive to both of them. This may lead
to significant but unnecessary end-to-end throughput
degradation.

Recently, a new TCP variant called TCP Veno [4, 6, 7] was
proposed to eliminate the severe suffering from wireless links.
It integrates the advantages of two opposing camps - TCP Reno
and Vegas [8]. A distinguishing feature of TCP Veno is that its
significant improvement over Reno performance is achieved
from better unitization of the available bandwidth that is left
unused by other existing connections, rather than by
aggressively grabbing extra bandwidth from other connections.
Besides, Veno only requires modification of the sender-side

protocol stack, making it easier to deploy over the current
Internet.

Earlier in 1990, Shenker et al. [1-2] have studied the in-
phase synchronization phenomenon of Reno in one-way traffic,
and observed that the co-existing connections drop packets
almost simultaneously when they reach the path capacity. In
this paper, we study the dynamics behavior of Veno’s
congestion control algorithm and its detailed interactions with
TCP Reno connections. The experimental results demonstrate
one interesting characteristics of Veno – out-of-phase
synchronization, which is quite different from Reno’s window
dynamics observed before. Moreover, our extensive study on
co-existence under different situations further verified that
Veno indeed works harmoniously with its competing Reno
connections over wired networks. Its slight improvement is
achieved by this out-of-phase synchronization.

The remainder of this paper is organized as follows. In
Section II, we brief TCP Veno congestion control algorithms.
Our experimental topology is described in Section III, and the
experimental results are presented and detailed analyses are
described in Section IV. Some conclusions and future work are
given in Section V.

II. THE MECHANISM OF TCP VENO
TCP Veno makes use of the idea of congestion monitoring

scheme from TCP Vegas, and integrates it into window
evolution scheme of Reno. In Vegas TCP, This monitoring is
calculated by the difference between the measured and the
expected throughput, namely,

 DIFF = (Expected – Actual) (1)

with Expected = cwnd/BaseRTT and BaseRTT is the minimum
of all measured RTT (round trip times) 1 . Actual is the
measured throughput at the sender given by cwnd/RTT, where
RTT is the actual round-trip time of a tagged packet. Strictly

1In Vegas, BaseRTT is continually updated throughout the live time of the
TCP connection with the minimum round-trip time collected so far. In Veno
TCP, however, BaseRTT is reset whenever packet loss is detected, either due
to time-out or duplicate ACKs. BaseRTT is then updated as in the original
Vegas algorithm until the next fast-recovery or slow-start is triggered. This is
done to take into account of the changing traffic from other connections and
that the bandwidth acquired by a single connection among the many
connections may change from time to time, causing the BaseRTT to change
also.

The author C. P. Fu is adjunct Professor at COIWIN, Chong Qing University
of Posts and Telecommunications, P. R. China.

Globecom 2004 1329 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

speaking, Expected as defined is the best possible throughput,
since BaseRTT is the minimum of all measured RTT.

In Veno, DIFF*BaseRTT is used to estimate the number of
packets accumulated at the bottleneck buffer. If there is more
than an upper threshold (β) of packets queuing for processing,
the TCP connection is said to have evolved into a congestive
state. Otherwise, it is in the non-congestive state. As in TCP
Reno, packet loss in the congestive state (congestive drop) will
cause the window to be halved. However, packet loss in the
non-congestive state (non-congestive drop) will only cause the
window size to be decreased by a factor of 1/5.

Moreover, Veno refines the additive increase phase of Reno
by forcing the TCP connection to stay longer at the operating
region. The whole algorithms are described in Figs. 1-2.

Figure 1. TCP-Veno-ssthresh adjusting algorithm

Figure 2. TCP-Veno-refined additive increase algorithm

Similar to [1-2], we define an epoch of a TCP connection to
be the time period during which an entire window’s worth of
packets have been acknowledged. We will focus on those
special epochs in which packet loss occurs, and refer them as
congestion epochs. Therefore, Veno’s cwnd increases one
packet by each epoch when DIFF*BaseRTT < β, or increase one
packet only by two epochs when DIFF*BaseRTT ≥ β. In contrast,
Reno always increase one packet for each epoch. The general
incrementing rate of Veno’s congestion window is slower than
that of Reno.

III. EXPERIMENT NETWORK
In this paper, we use network simulator (ns-2.26) [11] from

Lawrence Berkley National Laboratory to study TCP Veno.
The experimental network (see Fig. 3) consists of two source
and destination pairs. The pair connections share the same
bottleneck link using a droptail queue. The speed of each link
connecting nodes and according routers is 10Mbps with 1ms
propagation delay. The bottleneck link connecting Routers A
and B have µ packets/s and τ seconds of propagation delay, the

queue size along this link is B packets for both forward and
reverse directions. Typical data packet size is 1kBtyes and
typical ack size is 40 Bytes.

As in [2], we define the capacity of the path to be the
maximum number of packets (data packets and
acknowledgement packets) outstanding along this path, these
outstanding packets - data or acks - could be spread along the
transmission line, or queued at the buffer of the bottleneck
router. Referring to Fig. 3, the pipe size (C) between one
Source and one Destination is equal to B + 2P, where P =µ ⋅ (τ
+ 1ms + 1ms) ≅ µ ⋅τ .

Src 1

Router A Router B

10Mbps,1ms

Src 2

Dst 1

Dst 2

10Mbps,1ms

10Mbps,1ms

10Mbps,1ms

ACK

Data

Figure 3. Experiment network topology

Assuming the source has infinite data to send, and the
receiver advertised window has been set large enough, thus, we
interchangeably use wnd (window) and cwnd (congestion
window) in the following part.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
This section discusses some interesting results on the

dynamic behavior of TCP Veno and its co-existence with
legacy TCP Reno with highlights of the out-of-phase
synchronization paces observed in Veno TCP. We further point
out the out-of-phase synchronization benefits Veno’s behavior.

A. Dynamics of Veno TCP and Its Interaction with Reno
TCP
Two TCP Reno or Veno connections are conducted

between the pairs of sources and destinations in Fig. 1 with the
configuration of B=15, µ=1.6Mbps, and τ =50ms. As discussed
in [1-2], two Reno have in-phase synchronization paces,
namely, when one connection drops its window by half,
another connection will follow same window-penalty
immediately. Fig. 4(a) shows the case of two TCP Reno
connections. The phenomenon of the in-phase synchronization
is mainly because when the shared link is fully utilized, the two
TCP Reno senders continue to increase cwnd causing overflow
and a packet from each connection will be dropped during this
congestion epoch. After then, their window sizes will be halved
for both the connections.

When packet loss is detected by fast retransmit:
if (DIFF*BaseRTT < β) //most likely it is a random loss

ssthresh = cwndloss * (4/5)
else //most likely it is a congestion loss

ssthresh = cwndloss / 2

When packet loss is detected by retransmit timeout timer:
ssthresh is set to half the current window ;
slow start is performed; //performs the same action as in Reno

During the additive increase period:
 if (DIFF*BaseRTT < β) //available bandwidth is underutilized
 cwnd=cwnd+1/cwnd when every new ack is received
 else //available bandwidth is fully utilized
 cwnd=cwnd+1/cwnd when every other new ack is received

Globecom 2004 1330 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Figure 4. (a) Window evolution of two Reno connections. (b) Window
evolution of two Veno connections.

Veno refines the Multiplicative Decrease in Reno to
improve the performance in wireless environments. This
refinement also produces an interesting phenomenon – the out-
of-phase synchronization. It can be understood as follows. In
Fig. 4(b), the two Veno connections, when staying in the
congestive state, takes more conservative window increment
than Reno, namely, each cwnd is increased by one packet for
every two round trip time instead of one round trip time. At
“epoch 1”, when the link has been fully utilized, one
connection increases its window by one packet while another
does not. This only causes one packet to be dropped at the
router and hence only one connection suffers window-halving
penalty. The window-halving penalty has then released much
of the bandwidth for another connection to continue in
grabbing more bandwidth by conservative window increment.

However, when both Veno connections increase their
window sizes during the same round trip time when the link is
fully utilized, they will experience packet drops and both
connections will reduce their window sizes due to the network
congestion. This is depicted in Fig. 4(b) at “epoch 2”. It is also
notable at “epoch 2” that the connection with a lower window
size reduces less than that of the connection with a higher
window size. The reason is that the connection with low
window size is evolving in non-congestive state (with one
packet increasing by one round trip time), while another
remains in its congestive state2. Noted here that while two
connections are competing network resource, the connection
with more resource occupying, will suffer severe penalty, and
the connection with less resource occupying, will have less
severe window reduction. Thus, less aggressive connection will

2 In Veno, window only performs half reduction in congestive state when
packet loss is detected by three duplicated ACKs, otherwise, it will only take
1/5 window reduction. This packet loss here, while induced by buffer
overflowing, can be regarded as transient congestion loss, as discussed in [13].

have a chance to grab more resource when loss occurs,
meanwhile, more aggressive connection will give up some
resource occupied.

More interestingly, both connections interchange their roles
of being a more and a less aggressor in terms of bandwidth
usage as cwnd evolves, which is unique in TCP Veno. This
mechanism will definitely bring about fair competing for
limited resource over the Internet. Seeing the congestion epoch
1 and 2, this intertwined pattern repeats itself indefinitely, the
figure contains only one or a few of these cycle periods to
allow the reader to see the details of window evolutions.

The case of one Reno and one Veno sharing a link as
shown in Fig. 3 is also studied. The window evolution of both
connections is reported in Fig. 5, with evidence of the out-of-
phase synchronization phenomenon of Veno. The events at
“epoch 3” and “epoch 4” in Fig. 5 are corresponding to that of
“epoch 1” and “epoch 2” in Fig. 4(b). In this case, Reno
connection is the one always being the more aggressive
connection in bandwidth sharing.

The sharing of Reno and Veno also arises an interesting
result that shows fairness in bandwidth sharing between Reno
and Veno. Usually, a less aggressor in bandwidth sharing, such
as TCP Vegas, possesses less bandwidth over a long run when
sharing a link with the more aggressive Reno. However, Veno,
albeit being a less aggressor, is able to share bandwidth fairly
with Reno. Seeing Fig. 5, the solid line is Reno’s evolution,
dotted line is Veno’s connection. Let us look at two typical
time that packet loss is occurring - “epoch 3” and “epoch 4”.

Figure 5. Window evolution of Reno and Veno.

At “epoch 3”, Reno connection increase its window by one
packet while Veno’s connection is not (Veno, after entering the
congestive state, does not always increase its cwnd after a
round trip time, its window is increased by one packet for every
other round trip time in congestive state). On account of full
buffer (already occupied by these two connections) of the
bottleneck router, one newly extra packet in Reno’s window
will lead to a packet loss, while Veno, due to the unchanged of
its window, avoid packet loss. Obviously, at this time, Reno’s
aggressive window policy brings about a window-cut
(immediacy halved by the detection of this packet loss) while
Veno is allowed to grow and receive more bandwidth resource
until “epoch 4”, where both Reno and Veno suffer a packet loss
due to their simultaneous window increase at this time. Thus,
both windows are cut into halves. Nonetheless, in the following
window evolution phase (from 47.5s to 53s), Reno will
gradually exceed Veno’s window and grab more bandwidth

Globecom 2004 1331 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

resource because of its a little bit aggressiveness. At time 53, it
will repeat the case of “epoch 3”. This intertwined pattern
repeats its self indefinitely. Thus, over a long run, fairness
between Veno and Reno is able to be maintained. Noted that in
these two competing connections, Veno has suffered less
packet congestion loss (around 9 times in Fig. 5), while Reno
has more (around 13 times). This reduced congestion number
definitely increases the bandwidth utilization somewhat.

A more interesting scenario of multiple TCP connections
with two Veno and two Reno connections’ dynamics window
evolutions are shown in Fig. 6(a). With experiment settings of
B=44, µ=1.8Mbps and τ=50ms with network topology
described in Fig. 3

s

Figure 6. a) Window evoution of two Reno and Veno connections b)
Seqnuence number of four connections

 The events on “epoch 5” and “epoch 6” are similar to that
of “epoch 4” in Fig. 5. At “epoch 5” only Veno 1 does not
incur loss, at “epoch 6” Veno 1 and Veno 2 connections do not
incur loss. Following a series of synchronization congestions
occurrence (all Reno and Veno connections drop one packet
exactly at each epoch), the Reno connections show more
aggressiveness in these following cycles. After that, the
intertwined pattern comes up with the Veno 2 connection. We
notice that the window evolution becomes more complicated
while there are multiple connections, especially when
background traffic are introduced, but the out-of-phase
phenomenon still exist somehow. In Fig. 6, gives the evolution
of sequence numbers vs time and the diagram shows that all
four connections share the bottleneck link’s bandwidth equally
without bias.

B. Fairness of TCP Reno and Veno
Paper [4] has studied Veno TCP can achieve high

throughput improvement over Reno in wireless networks. In
this section, we investigate the dynamics fairness issues of TCP
Reno and Veno over wired networks.

As we observed, two Reno connections always have
synchronized in-phase paces. While a Veno connection co-
exists with a Reno connection, there are some occasions that
Veno does not incur packet loss in specific epoch. To some
extent, this behavior will avoid some congestion loss, and may
improve the utilization of network link. We design our
experiments as follows: either the Reno or the Veno connection
starts first to transmit a 20M byte files, the other connection –
Reno or Veno – joins in at 20s and begins to transfer a 8M byte
files. The setting of the network topology is: transmission rate
2Mbps, a round-trip delay 100ms and the bottleneck link buffer
size 15. We plot the congestion window as well as the
sequence number against time in Fig. 7, 8 and 9. From the
three different scenarios we observe that later coming
connection would not be biased by previous running
connection, they will share the bandwidth evenly, this can also
be seen in each diagram of sequence number vs time, where the
slope of two connections are almost same.

Figure 7. Reno connection is started first, another Reno joins in at 20s

Globecom 2004 1332 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

Figure 8. Veno connection is started first, Reno joins in at 20s

Figure 9. Reno connection is started first, Veno joins in at 20s

In the following Table 1, we calculate the throughput using
the file size plus the total retransmitted bytes divided by time in
seconds. From the table, we got three results, 1) as for longer
transmission over wireline, Veno gests slightly higher
throughput regardless of whatever combinations is employed;
2) as for short transmission, Veno also got slightly higher
throughput; 3) referring to row 3 of this table, we know this
slight improvement is brought about by less retransmitted
packets, in other words, congestion losses in Veno are reduced
as compared to Reno. These results conform to our above
analysis in Section IV.A.

TABLE I. PERFORMANCE EVALUATION OF RENO VS VENO, FIRST
CONNECTIONS IS WITH 20M BYTES SENT, SECOND WITH 8M BYTES

 Reno/Reno Reno/Veno Veno/Reno

Time
Transmitted 124.66/73.52 124.28/71.47 123.89/73.73

Retransmitted
packets 105/56 103/45 90/54

Throughput
(KByte/s) 161.27/109.51 161.76/112.56 162.4/109.85

V. CONCLUSION
TCP Veno [4, 6, 7] was recently proposed to eliminate TCP

performance suffering from wireless links. Real network
measurements and live Internet results have validated Veno’s
significant throughput improvement in wireless networks and
its harmonious co-existence with TCP Reno connections in
wired networks.

In this paper, we studied the dynamics of TCP Veno and its
detailed interaction with TCP Reno over wired networks. We
observed out-of-phase synchronization phenomenon appearing
in Veno’s window evolution, this desired nature leads to
Veno’s better utilization of wired link. Our further study
verifies that either Veno or Reno would not bring about any
bias for any connection initiated later, and they can fairly share
bottleneck link bandwidth in wired networks. From the
practical viewpoint, this advantage will be definitely helpful to
deploy sending-side based Veno TCP in current Internet with
hybrid wired and wireless links.

REFERENCES
[1] Scott Shenker, Lixia Zhang, David D.Clark, “ Some Observations on the

Dynamics of a Congestion Control Algorithm” ACM SIGCOMM
Computer Communication Review, Volume 20 , Issue 5 Oct. 1990

[2] Lixia Zhang, Scott Shenker, David D.Clark, “ Observations on the
Dynamics of a Congestion Control Alogrithm: The Effects of Two-Way
Traffic”. Proceedings of the conference on Communications
architecture & protocols, Zurich, Switzerland Pages: 133 - 147, 1991

[3] Cheng Peng Fu, and Soung Chang Liew, "A remedy for performance
degradation of TCP Vegas in asymmetric networks," IEEE
Communications Letters, January 2003.

[4] Cheng Peng Fu, and Soung Chang Liew, “TCP Veno: TCP enhancement
for wireless access networks,” IEEE Journal of Selected Areas in
Communications, vol. 21, no. 2, February 2003.

[5] Cheng Peng Fu, and Soung Chang Liew, “A remedy for performance
degrateion of TCP Vegas in asymmetric networks,” IEEE Comm.
Letters, January 2003

[6] Q. X. Pang, S. C. Liew, C. P. Fu, W. Wang, “Performance Study of TCP
Veno over wireless LAN and RED router,” IEEE Globecom 2003.

[7] C. P. Fu, W. Lu, B. S. Lee, “TCP Veno Revisited,” IEEE Globecom
2003.

[8] L.Brakmo, S.O’Malley, and L.Peterson. TCP Vegas: New techniques for
congestion detection and avoidance. In Proceedings of the SIGCOMM’
94 Symposium (Aug. 1994) pages 24-35.

[9] T.V Lakshman, Upamanyu Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss,”
IEEE/ACM Trans. Networking, Vol5, No. 3, June 1997

[10] J. Mo, R. J. La, V. Anantharam, and J. Walrand. Analysis and
Compariation of TCP Reno and TCP Vegas. IEEE INFOCOM 1999,
March 1999.

[11] Ns. Network Simulator, version 2.26. http://www.isi.edu/nsnam/ns.
[12] A. Veres and M. Boda, “The Chaotic Nature of TCP Congestion

Control,” IEEE INFOCOM 2000, March 2000.
[13] Dhiman Barman, Ibrahim Matta, “Effectiveness of Loss Labeling in

Improving TCP Performance in Wired/Wireless Networks,” IEEE
International Conference on Network Protocols, Paris, France,
November 12-15, 2002.

Globecom 2004 1333 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

