
HIGH-SPEED LOW COMPLEXITY QUADRATURE MIRROR FILTERS
FOR WAVELET-BASED DNA MICROARRAY IMAGE PROCESSING

Zhu Xiangfeng, A.P.Vinod, E.M-K.Lai and Douglas Maskell

School of Computer Engineering, Nanyang Technological University
Nanyang Avenue, Singapore 639798

Email: asvinod@ntu.edu.sg

Abstract: The computational cost of quadrature
mirror filters (QMF) used in wavelet-based DNA
microarray image processing systems is dominated
by the complexity of the coefficient multipliers. Even
though many algorithms have been proposed for
image denoising using wavelet transform, little
attention has been paid to the hardware-efficient
realization of wavelet filter banks. In this paper, we
present a realization technique for low complexity
high-speed QMF for DNA microarray image
processing applications. Our algorithm exploits the
fact that when multiplication is realized using shifts
and adds together, the adder width can be
minimized by limiting the shifts of the operands to
shorter lengths. Design examples show that the
proposed method offers an average full adder
reduction of 40% over conventional filter bank
implementation methods.

1. Introduction

Microarray is a cutting edge technology in genomic
signal analysis that allows thousands of specific DNA
sequences to be detected simultaneously on a small
glass slide, and permit all of this information to appear
on a single image [1, 2]. The basic goal of microarray
image processing is to transform an image of spots of
varying intensities into a matrix, called a gene
expression matrix, which is a measure of the intensity
of each spot. Although this transformation is a
relatively straightforward goal, the presence of detector
noise such as photon noise, electronic noise, laser light
reflection and background fluorescence make it a
complex process. Noise reduction is a predominant
issue in microarray analysis [3]. Wavelet-based
denoising algorithms have great potential in DNA
microarray image denoising [4, 5]. Even though many
algorithms have been proposed for image denoising
using wavelet transform, little attention has been paid to
the hardware-efficient realization of wavelet filter
banks. In order to process the huge amount of data
generated by the DNA microarray, dedicated hardware
optimized wavelet filter banks are necessary.
Enhancing the processing speed of the wavelet filter
banks is crucial to achieve real-time image denoising.

In this paper, we present a design technique for
realizing low complexity high-speed wavelet filter
banks for DNA microarray image denoising. It is well
known that tree-structured quadrature mirror filter

(QMF) banks are employed in the implementation of
discrete wavelet transform [6]. Basically, a QMF bank
decomposes the input signal into low-pass and high-
pass frequency bands. When filtering is recursively
applied to the low-pass frequency bands, the QMF filter
bank produces an octave band split or wavelet
decomposition. The core operation in a QMF tree for
DNA microarray image denoising is two-dimensional
(2-D) finite impulse response (FIR) filtering, which
requires a huge amount of computations and memory.
Hence, the computational complexity must be reduced
so as to meet the real-time requirements of microarray
image processing. In our method, we implement the 2-D
QMF banks as a delayed-sum of 1-D multiplierless
QMF filters. The number of computations is reduced by
sharing the common terms (common subexpressions)
between the coefficients in each 1-D filter.

The paper is organized as follows. A review of filter
coefficient multiplier complexity analysis and common
subexpression elimination (CSE) [7] method are
provided in section 2. In section 3, we present
coefficient-partitioning (CP) [8] method. In section 4,
we provide design examples to illustrate our method
and in Section 5 we provide our conclusions.

2. Multiplier Complexity

For completeness, a brief review of the complexity
of the multiplier block (MB) implementation in terms of
full adders (FAs) required for each multiplier of the
filter formulated in [8] is presented here. Further, we
present the CP algorithm and show that the FA
requirement can be reduced considerably using our
method.

An adder that adds two n-bit numbers requires at
most (n+1) FAs to compute the sum. The area, power,
and speed of an adder depend on the adder width (n+1).
Therefore, the number of full adders (NFAs) required to
implement the multipliers must be minimized. Filter
coefficients in canonical signed digits (CSD) formed
with wordlengths of up to 24 bits are considered for
analyzing the adder complexity. Since no adjacent bits
in CSD are one’s, a 24-bit CSD number can have a
maximum of 12 nonzero operands could occur in
multiplication.

Case I: Odd number of operands: The NFAs),(oN
required computing the output corresponding to a
coefficient with n operands can be determined using the
expression [8]:

)32()1()1()32()1()1(756534312 +++++++++++= rarrarrarNo
)32()1()1()63(11910978 ++++++++ rarrar (1)

where rn is the range (number of bits) of the nth operand
and ais are equal to 0 except an-2, which is 1.

Case II: Even number of operands: The NFAs (Ne)
required to compute the output corresponding to a
coefficient with n operands is given by [8]:

++++++++=)63()'()32()1(806042 rcrcrrNe
)63()'(121101 +++ rcrc (2)

Where


 =

≡
elsewhere ,1

6for ,2
0

n
c ,



 =

≡
elsewhere ,1

6for ,5.1
'0

n
c ,



 =

≡
elsewhere ,1

10for ,2
1

n
c , and .

elsewhere ,1
10for ,5.1

'1


 =

≡
n

c

The coefficient ,0001010101001010.0=kh is used
as an example to illustrate the CSE method [7] here. In
direct implementation, (i.e., the implementation using
shifts and adds and without CSE or any other multiplier
optimization techniques) the output of the filter could be
expressed as:

1
16

1
14

1
9

1
7

1
4

1
2 222222 xxxxxxyk

−−−−−− +++++= (3)
where x1 is the input. In this case, n is 6 (even), ,2r

,4r and 6r are 12, 17 and 24 respectively. Using (2) the
total number of FA required to compute (3) in direct
method is),5.1(2)32()1(642 +++++ rrr , i.e. 106
FAs.

The goal of the CSE [7] method is to identify
multiple occurrences of identical bit patterns in the
coefficient set. The pattern [1 0 1] is present thrice in
this example, which can be expressed as a common
subexpression (CS),
 2112 >>+= xxx (4)
where “>>” represents ‘shift right’ operation.

Using the CS (4), the output can be expressed as
 1472 222 >>+>>+>>= xxxyk (5)
Figure 1 shows the multiplication structure using CSE.
The numerals adjacent to the data path represents the
number of bitwise right shifts. The numerals in brackets
alongside the adders indicate the number of FAs used in
the adder. In this case, 53 FAs are required for
computing ky using CSE method [7], which is a
reduction of 50% over the direct implementation.

Figure 1: FIR multiplier realization using CSE [7].

3. Coefficient-Partitioning

The key idea in our approach is to reduce the ranges
of the operands so that the adder width can be reduced
which in turn minimizes the number of FAs. To achieve
this, firstly the coefficients are encoded using the PFP
representation and then partitioned for further reduction
of range.

Definition1 (Pseudo floating-point (PFP)
representation): The general representation of CSD for
the ith filter coefficient that has a wordlength B is

.2
1

0
∑=
−

=

B

j

a
i

ijh The PFP representation of ih is [9]












∑=∑=
−

=

−

=

− 1

0

1

0
2.2 2.2 000

B

j

caB

j

aaa
i

ijiiijih (6)

where .0iijij aac −= The term 0ia is known as the shift

and the upper limit value,)(0)1(iBi aa −− , is known as
the span. Instead of expressing the coefficients using B-
bit CSD, it can be expressed as a (shift, span) pair using
fewer bits. For example, the PFP form of the coefficient
in the example in Figure 1 is

).222222(2 141275202 −−−−−− +++++ The term
22− is the shift part, and the bracketed term is the span

part. The shift operation can be performed after the
addition of all the terms of the span part. This reduces
the effective wordlength of the coefficient to that of the
span (11 bits), which in turn reduces the ranges of the
operands. Using (2), the number of FAs required to
implement the PFP coefficient multiplier is 98. We shall
now show that by combining the PFP coding scheme
with the CSE and then partitioning the resulting
expression, further reduction of FAs can be achieved.

3.1 FA Reduction Using Coefficient-Partitioning

The basic idea of CP is to reduce the range of the
span part of PFP by partitioning it into two parts.
Definition 2 (Order): The most significant bit of a filter
coefficient represented in CSD form is defined as the
order of the coefficient.
Firstly, the CSD coefficient is expressed using CS and
the resulting expression is then coded using PFP
representation. Let M represents the span of the PFP
representation. The span part is partitioned into two
parts of length 2/M (or two sub-components of
lengths  2/M and  2/M if M is odd). The latter
sub-component is then scaled by its order to reduce its
span. The ‘partitioned and scaled’ versions of the PFP
coefficients thus obtained can be added using fewer
numbers of FAs since their ranges are reduced.
Consider the same example of the filter tap shown in
Figure 1. Using PFP, the filter output obtained in CSE
method (5) can be expressed as

)22(2 2
12

2
5

2
2 xxx −−− ++ . In this case, the span)(M is

⊕
2

ky

⊕ D D

CS: 2112 >>+= xxx

⊕
 2 7 14

⊕

A1 (10)

A2 (18)

A3 (25)

1x

Multiplier
Block

Critical path =
3 adder-steps

9 and the shift is 5. Partitioning the span part into two
parts,)(1 nh and),(2 nh we have

 21)(xnh = and 2
12

2
5

2 22)(xxnh −− += (7)
where)(nh is the sum of)(1 nh (MSB half) and)(2 nh
(LSB half). The LSB part is further scaled by its order,

,2 5− and expressed as)2(2)(2
7

2
5

2 xxnh −− += . Figure
2 shows the implementation of the filter tap using our
CP method. When compared with the CSE method in
Figure 1, the adders 2A and ,3A have shorter widths
since the ranges of their operands are shorter. The shift

52− of)(2 nh and that of the final expression
)22(2 2

12
2

5
2

2 xxx −−− ++ are performed after the
addition stages as shown alongside the data paths at the
outputs of adders 2A and 3A respectively.

Figure 2: Multiplier realization using CP method.

Thus, our CP method requires only 47 FAs to
implement the filter tap, which is a reduction of 11.3%
compared with the CSE method [7]. Note that both
methods have identical critical path lengths (3 adder-
steps) and hence their multiplier delays are same.

The steps of the CP algorithm are as follows.

Step 1: Design the filter of length N.
Step 2: Obtain the CSD representation of the
coefficients for a desired wordlength. Set .0=k
Step 3: Identify the CS [1 0 1] and [1 0 –1] and their
negated versions in)(kh . Express the filter output
corresponding to the coefficient)(kh using HCSE.
Step 4: Express the HCSE output corresponding to)(kh
in PFP. Set M = span.
Step 5: Partition the span part into two parts of length

.2/M Scale the latter part by its order.
Step 6: Increment k. If ,Nk ≠ go to Step 3. Otherwise,
terminate the program.

4. Design Examples

Example 1: A prototype QMF that has pass-band
and stop-band edges 0.5π and 0.52π respectively is
considered. The filter specific taps vary from 20 to 400
and the coefficient wordlength using CSD is from 8-bit

to 24-bit. The reduction of adders achieved using the
CSE method over the direct implementation is shown in
Figure 3. The average reduction of adders using CSE
method [7] over direct method for N=50, 80, 120 and
250 are 28%, 28%, 27% and 24% respectively.

8 12 16 20 24

10%

15%

20%

25%

30%

35%

Coefficient Word Length (bits)

P
er

ce
nt

 R
ed

uc
tio

n
of

 A
dd

er
s

N=50
N=80
N=120
N=250

Figure 3: Adder reduction using CSE method over direct

method

Figure 4 shows that when the coefficient wordlength is
16-bit, the adder reductions for N=50, 80, 120 and 250
are 32%, 32%, 30% and 27% respectively. Average
reduction of adders using CSE method [7] over direct
method is 31%.

50 100 150 200 250
20%

25%

30%

35%

40%

Number of Filter Length

P
er

ce
nt

 R
ed

uc
tio

n
of

 A
dd

er
s

Figure 4: Adder reduction for 16-bit coefficient wordlength

Figure 5 shows that when the coefficient wordlength is
24-bit, the adder reductions for N=50, 80, 120 and 250
are 32%, 33%, 32% and 30% respectively. Average
reduction of adders using CSE method [7] over direct
method is 32%.

50 100 150 200 250
20%

25%

30%

35%

40%

Number of Filter Length

P
er

ce
nt

 R
ed

uc
tio

n
of

 A
dd

er
s

Figure 5: Adder reduction for 24-bit coefficient wordlength

⊕
2

⊕

7
5
⊕

A1 (10)

A2 (18)

A3 (19)

1x

Multiplier
Block

ky

⊕ D D

2

Critical path =
3 adder-steps

The percentage reduction of FAs using CSE method
combined with our CP method over direct
implementation is shown in Figure 6. The average
reduction of FAs using CP-CSE method over direct
implementation for N=50, 80, 120 and 250 are 44%,
44%, 43% and 42% respectively.

8 12 16 20 24

20%

25%

30%

35%

40%

45%

50%

55%

Coefficient Word Length (bits)

P
er

ce
nt

 R
ed

uc
tio

n
of

 F
ul

l A
dd

er
s

N=50
N=80
N=120
N=250

Figure 6: FA reduction using CP-CSE method over direct

method.

Figure 7 shows that when the coefficient wordlength is
16-bit, the adder reductions for N=50, 80, 120 and 250
are 48%, 41%, 51% and 50% respectively. Average
reduction of adders using CP-CSE method over direct
method is 48%.

50 100 150 200 250
30%

35%

40%

45%

50%

55%

Number of Filter Length

P
er

ce
nt

 R
ed

uc
tio

n
of

 F
ul

l A
dd

er
s

Figure 7: FA reduction for 16-bit coefficient wordlength

Figure 8 shows that when the coefficient wordlength is
24-bit, the reduction of the adder for N=50, 80, 120 and
250 are 51%, 50%, 54% and 52% respectively. Average
reduction of adders using CP-CSE method over direct
method is 51%.

50 100 150 200 250
30%

35%

40%

45%

50%

55%

Number of Filter Length

P
er

ce
nt

 R
ed

uc
tio

n
of

 F
ul

l A
dd

er
s

Figure 8: FA reduction for 24-bit coefficient wordlength

5. Conclusions

We have proposed a design technique for realizing
low complexity high-speed quadrature mirror filter for
DNA microarray image denoising. The design examples
show that our method offers average FA reductions of
40% over direct implementation. Though the design
examples are shown for a prototype quadrature mirror
filter, our method can be easily extended for a tree-
structured QMF bank, which is the fundamental
building block of wavelet filter banks.

6. References

[1] Y. H. Yang, M. J. Buckley, S. Dudiot, and T. P.

Speed, “Comparison of methods for image analysis
on cDNA microarray data,” Journal of
Computational and Graphical Statistics, vol. 11, pp.
108-136, January 2002.

[2] P. P. Vaidyanathan, “Genomic and proteomics: A
signal processor’s tour,” IEEE Circuits and Systems
Magazine, vol. 4, pp. 6-29, Fourth Quarter 2004.

[3] X-Y. Zhang, F. Chen, Y-T. Zhang, S. C. Agner, M.
Akay, Z-H. Lu, M. M. Y. Waye, and S. K-W. Tsui,
“Signal processing techniques in genomic
engineering,” Proceedings of the IEEE, vol. 90, no.
12, pp. 1822-1832, December 2002.

[4] X. H. Wang, R. S. H. Istepanian, and Y. H. Song,
“Microarray image enhancement by denoising
using stationary wavelet transform,” IEEE
Transactions on NanoBioscience, vol. 2, no. 4, pp.
184-189, December 2003.

[5] F. E. Turkheimer, D. C. Duke, L. B. Moran, and M.
B. Graeber, “Wavelet analysis of gene expression
(WAGE),” Proceedings of IEEE International
Symposium on Biomedical Imaging: Macro to
Nano, vol. 2, pp. 1183-1186, April 2004.

[6] P. P. Vaidyanathan, Multirate Systems and Filter
Banks: Prentice Hall, 1993.

[7] R. I. Hartley, “Subexpression sharing in filters
using canonic signed digit multipliers,” IEEE
Trans. Circuits Syst. II, vol. 43, pp. 677-688, Oct.
1996.

[8] A. P. Vinod and E. M-K. Lai, “An efficient
coefficient-partitioning algorithm for realizing low
complexity digital filters,” IEEE Trans. On
Computer-Aided Design of Integrated Circuits
Syst., vol. 24, no. 12, Dec. 2005 (To appear).

[9] A. P. Vinod, A. B. Premkumar and E. M-K. Lai,
“An optimal entropy coding scheme for efficient
implementation of pulse shaping FIR filters in
digital receivers,” Proceedings of the IEEE
International Symposium on Ckts. And Syst., vol. 4,
pp. 229-232, Bangkok, Thailand, May 2003.

