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Abstract: The computational cost of quadrature 
mirror filters (QMF) used in wavelet-based DNA 
microarray image processing systems is dominated 
by the complexity of the coefficient multipliers. Even 
though many algorithms have been proposed for 
image denoising using wavelet transform, little 
attention has been paid to the hardware-efficient 
realization of wavelet filter banks. In this paper, we 
present a realization technique for low complexity 
high-speed QMF for DNA microarray image 
processing applications. Our algorithm exploits the 
fact that when multiplication is realized using shifts 
and adds together, the adder width can be 
minimized by limiting the shifts of the operands to 
shorter lengths. Design examples show that the 
proposed method offers an average full adder 
reduction of 40% over conventional filter bank 
implementation methods. 
 
1. Introduction 
 

Microarray is a cutting edge technology in genomic 
signal analysis that allows thousands of specific DNA 
sequences to be detected simultaneously on a small 
glass slide, and permit all of this information to appear 
on a single image [1, 2]. The basic goal of microarray 
image processing is to transform an image of spots of 
varying intensities into a matrix, called a gene 
expression matrix, which is a measure of the intensity 
of each spot. Although this transformation is a 
relatively straightforward goal, the presence of detector 
noise such as photon noise, electronic noise, laser light 
reflection and background fluorescence make it a 
complex process. Noise reduction is a predominant 
issue in microarray analysis [3]. Wavelet-based 
denoising algorithms have great potential in DNA 
microarray image denoising [4, 5]. Even though many 
algorithms have been proposed for image denoising 
using wavelet transform, little attention has been paid to 
the hardware-efficient realization of wavelet filter 
banks. In order to process the huge amount of data 
generated by the DNA microarray, dedicated hardware 
optimized wavelet filter banks are necessary. 
Enhancing the processing speed of the wavelet filter 
banks is crucial to achieve real-time image denoising. 

In this paper, we present a design technique for 
realizing low complexity high-speed wavelet filter 
banks for DNA microarray image denoising. It is well 
known that tree-structured quadrature mirror filter 

(QMF) banks are employed in the implementation of 
discrete wavelet transform [6]. Basically, a QMF bank 
decomposes the input signal into low-pass and high-
pass frequency bands. When filtering is recursively 
applied to the low-pass frequency bands, the QMF filter 
bank produces an octave band split or wavelet 
decomposition. The core operation in a QMF tree for 
DNA microarray image denoising is two-dimensional 
(2-D) finite impulse response (FIR) filtering, which 
requires a huge amount of computations and memory. 
Hence, the computational complexity must be reduced 
so as to meet the real-time requirements of microarray 
image processing. In our method, we implement the 2-D 
QMF banks as a delayed-sum of 1-D multiplierless 
QMF filters. The number of computations is reduced by 
sharing the common terms (common subexpressions) 
between the coefficients in each 1-D filter. 

The paper is organized as follows. A review of filter 
coefficient multiplier complexity analysis and common 
subexpression elimination (CSE) [7] method are 
provided in section 2. In section 3, we present 
coefficient-partitioning (CP) [8] method. In section 4, 
we provide design examples to illustrate our method 
and in Section 5 we provide our conclusions. 
 
2. Multiplier Complexity 
 

For completeness, a brief review of the complexity 
of the multiplier block (MB) implementation in terms of 
full adders (FAs) required for each multiplier of the 
filter formulated in [8] is presented here. Further, we 
present the CP algorithm and show that the FA 
requirement can be reduced considerably using our 
method. 

An adder that adds two n-bit numbers requires at 
most (n+1) FAs to compute the sum. The area, power, 
and speed of an adder depend on the adder width (n+1). 
Therefore, the number of full adders (NFAs) required to 
implement the multipliers must be minimized. Filter 
coefficients in canonical signed digits (CSD) formed 
with wordlengths of up to 24 bits are considered for 
analyzing the adder complexity. Since no adjacent bits 
in CSD are one’s, a 24-bit CSD number can have a 
maximum of 12 nonzero operands could occur in 
multiplication. 

Case I: Odd number of operands: The NFAs ),( oN  
required computing the output corresponding to a 
coefficient with n operands can be determined using the 
expression [8]: 



)32()1()1()32()1()1( 756534312 +++++++++++= rarrarrarNo  
)32()1()1()63( 11910978 ++++++++ rarrar  (1) 

where rn is the range (number of bits) of the nth operand 
and ais are equal to 0 except an-2, which is 1. 

Case II: Even number of operands: The NFAs (Ne) 
required to compute the output corresponding to a 
coefficient with n operands is given by [8]: 
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The coefficient ,0001010101001010.0=kh is used 
as an example to illustrate the CSE method [7] here. In 
direct implementation, (i.e., the implementation using 
shifts and adds and without CSE or any other multiplier 
optimization techniques) the output of the filter could be 
expressed as:  

1
16

1
14

1
9

1
7

1
4

1
2 222222 xxxxxxyk

−−−−−− +++++=  (3) 
where x1 is the input. In this case, n is 6 (even), ,2r  

,4r and 6r  are 12, 17 and 24 respectively. Using (2) the 
total number of FA required to compute (3) in direct 
method is ),5.1(2)32()1( 642 +++++ rrr , i.e. 106 
FAs.  

The goal of the CSE [7] method is to identify 
multiple occurrences of identical bit patterns in the 
coefficient set. The pattern [1 0 1] is present thrice in 
this example, which can be expressed as a common 
subexpression (CS), 
                        2112 >>+= xxx    (4) 
where “>>” represents ‘shift right’ operation. 

Using the CS (4), the output can be expressed as 
            1472 222 >>+>>+>>= xxxyk                (5) 
Figure 1 shows the multiplication structure using CSE. 
The numerals adjacent to the data path represents the 
number of bitwise right shifts. The numerals in brackets 
alongside the adders indicate the number of FAs used in 
the adder. In this case, 53 FAs are required for 
computing ky  using CSE method [7], which is a 
reduction of 50% over the direct implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

Figure 1: FIR multiplier realization using CSE [7]. 

3. Coefficient-Partitioning 
 

The key idea in our approach is to reduce the ranges 
of the operands so that the adder width can be reduced 
which in turn minimizes the number of FAs. To achieve 
this, firstly the coefficients are encoded using the PFP 
representation and then partitioned for further reduction 
of range. 

Definition1 (Pseudo floating-point (PFP) 
representation): The general representation of CSD for 
the ith filter coefficient that has a wordlength B is 
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where .0iijij aac −=  The term 0ia  is known as the shift 

and the upper limit value, )( 0)1( iBi aa −− , is known as 
the span. Instead of expressing the coefficients using B-
bit CSD, it can be expressed as a (shift, span) pair using 
fewer bits. For example, the PFP form of the coefficient 
in the example in Figure 1 is 

).222222(2 141275202 −−−−−− +++++  The term 
22−  is the shift part, and the bracketed term is the span 

part. The shift operation can be performed after the 
addition of all the terms of the span part. This reduces 
the effective wordlength of the coefficient to that of the 
span (11 bits), which in turn reduces the ranges of the 
operands. Using (2), the number of FAs required to 
implement the PFP coefficient multiplier is 98. We shall 
now show that by combining the PFP coding scheme 
with the CSE and then partitioning the resulting 
expression, further reduction of FAs can be achieved. 
 

3.1 FA Reduction Using Coefficient-Partitioning 
 

The basic idea of CP is to reduce the range of the 
span part of PFP by partitioning it into two parts. 
Definition 2 (Order): The most significant bit of a filter 
coefficient represented in CSD form is defined as the 
order of the coefficient.   
Firstly, the CSD coefficient is expressed using CS and 
the resulting expression is then coded using PFP 
representation. Let M  represents the span of the PFP 
representation. The span part is partitioned into two 
parts of length 2/M  (or two sub-components of 
lengths  2/M  and  2/M  if M  is odd). The latter 
sub-component is then scaled by its order to reduce its 
span. The ‘partitioned and scaled’ versions of the PFP 
coefficients thus obtained can be added using fewer 
numbers of FAs since their ranges are reduced. 
Consider the same example of the filter tap shown in 
Figure 1. Using PFP, the filter output obtained in CSE 
method (5) can be expressed as 
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9 and the shift is 5. Partitioning the span part into two 
parts, )(1 nh  and ),(2 nh  we have 
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where )(nh  is the sum of )(1 nh  (MSB half) and )(2 nh  
(LSB half). The LSB part is further scaled by its order, 

,2 5−  and expressed as )2(2)( 2
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2 xxnh −− += . Figure 
2 shows the implementation of the filter tap using our 
CP method. When compared with the CSE method in 
Figure 1, the adders 2A  and ,3A  have shorter widths 
since the ranges of their operands are shorter. The shift 

52−  of )(2 nh  and that of the final expression 
)22(2 2

12
2

5
2

2 xxx −−− ++  are performed after the 
addition stages as shown alongside the data paths at the 
outputs of adders 2A  and 3A  respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Multiplier realization using CP method. 

Thus, our CP method requires only 47 FAs to 
implement the filter tap, which is a reduction of 11.3% 
compared with the CSE method [7]. Note that both 
methods have identical critical path lengths (3 adder-
steps) and hence their multiplier delays are same. 

The steps of the CP algorithm are as follows. 

Step 1: Design the filter of length N. 
Step 2: Obtain the CSD representation of the 
coefficients for a desired wordlength. Set .0=k  
Step 3: Identify the CS [1 0 1] and [1 0 –1] and their 
negated versions in )(kh . Express the filter output 
corresponding to the coefficient )(kh  using HCSE. 
Step 4: Express the HCSE output corresponding to )(kh  
in PFP. Set M = span. 
Step 5: Partition the span part into two parts of length 

.2/M  Scale the latter part by its order. 
Step 6: Increment k. If ,Nk ≠  go to Step 3. Otherwise, 
terminate the program. 
 
4. Design Examples 
 

Example 1: A prototype QMF that has pass-band 
and stop-band edges 0.5π and 0.52π respectively is 
considered. The filter specific taps vary from 20 to 400 
and the coefficient wordlength using CSD is from 8-bit 

to 24-bit. The reduction of adders achieved using the 
CSE method over the direct implementation is shown in 
Figure 3. The average reduction of adders using CSE 
method [7] over direct method for N=50, 80, 120 and 
250 are 28%, 28%, 27% and 24% respectively.  
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Figure 3: Adder reduction using CSE method over direct 

method 
 
Figure 4 shows that when the coefficient wordlength is 
16-bit, the adder reductions for N=50, 80, 120 and 250 
are 32%, 32%, 30% and 27% respectively. Average 
reduction of adders using CSE method [7] over direct 
method is 31%.  
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Figure 4: Adder reduction for 16-bit coefficient wordlength 

 
Figure 5 shows that when the coefficient wordlength is 
24-bit, the adder reductions for N=50, 80, 120 and 250 
are 32%, 33%, 32% and 30% respectively. Average 
reduction of adders using CSE method [7] over direct 
method is 32%.  
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Figure 5: Adder reduction for 24-bit coefficient wordlength 
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The percentage reduction of FAs using CSE method 
combined with our CP method over direct 
implementation is shown in Figure 6. The average 
reduction of FAs using CP-CSE method over direct 
implementation for N=50, 80, 120 and 250 are 44%, 
44%, 43% and 42% respectively.  
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Figure 6: FA reduction using CP-CSE method over direct 

method. 
 
Figure 7 shows that when the coefficient wordlength is 
16-bit, the adder reductions for N=50, 80, 120 and 250 
are 48%, 41%, 51% and 50% respectively. Average 
reduction of adders using CP-CSE method over direct 
method is 48%. 
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Figure 7: FA reduction for 16-bit coefficient wordlength 

 
Figure 8 shows that when the coefficient wordlength is 
24-bit, the reduction of the adder for N=50, 80, 120 and 
250 are 51%, 50%, 54% and 52% respectively. Average 
reduction of adders using CP-CSE method over direct 
method is 51%. 
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Figure 8: FA reduction for 24-bit coefficient wordlength 

 

 
5. Conclusions 
 

We have proposed a design technique for realizing 
low complexity high-speed quadrature mirror filter for 
DNA microarray image denoising. The design examples 
show that our method offers average FA reductions of 
40% over direct implementation. Though the design 
examples are shown for a prototype quadrature mirror 
filter, our method can be easily extended for a tree-
structured QMF bank, which is the fundamental 
building block of wavelet filter banks. 
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