
Image Resizing and Rotation Based on the
Consistent Resampling Theory

Beilei Huang and Edmund M-K. Lai
School of Engineering and Advanced Technology

Massey University, Wellington
New Zealand

Email: {b.huang, e.lai}@massey.ac.nz

A.P.Vinod
School of Computer Engineering

Nanyang Technological University
Singapore 639798

Abstract— The recently proposed consistent resampling theory
for non-bandlimited signals is applied to image resizing and rota-
tion. Images with high frequency components can be resampled
using this scheme to achieve high quality performance. Image
resizing is treated as resampling using non-ideal interpolation
functions. Both zoom in and zoom out by non-integer factors are
considered. Image rotation is also formulated as a resampling
process. We show that our approach outperforms other linear im-
age processing techniques without increasing the computational
cost.

I. INTRODUCTION

Resizing and rotation are common image processing opera-
tions. In each case the original image is resampled to compute
the new pixel values in the resulting image. The resampling
process involves two steps [1]. First, the discrete input is
interpolated to a continuous signal. Then, this continuous
signal is resampled at the desired locations and at the desired
sampling rate to produce a discrete output.

The performance of the resampling process is conven-
tionally indicated by the mean squared error (MSE) of its
embedded interpolation process. Therefore, the focus has been
on improving the performance of the interpolation process [2].
Some non-linear methods have been devised to minimize the
MSE. In [3], the signal is expressed in terms of the interpola-
tion function. The optimally reconstructed signal is obtained
by solving a set of separable partial differential equations such
that the MSE is minimized. A similar approach can be found
in the work on scalable video coding [4]. The upsampling and
downsampling of the discrete signals are modeled and solved
via differential equations. Adaptive interpolating filters are
used in [5] to minimize the MSE for each individual estimated
sample. A generalized approach is proposed in [6] that makes
use of kernel regression methods to obtain the coefficients of
the spline functions that minimize the MSE.

The development of consistent sampling theory provides
a linear method to achieve minimum MSE when noise is
not present [7], [8]. It simplifies the design process and
reduces computational complexity without compromising per-
formance. Consequently, the theory is then directly applied to
image resizing and rotation [9], [10]. Two major techniques,
oblique interpolation [11] and quasi interpolation [12], have
been developed recently based on the principle of consistent

sampling which has been shown to provide better performance
than conventional techniques.

In [13], the techniques derived for consistent sampling are
used to analyze the performance of video de-interlacing. In
this case, results contradictory to common sense are obtained.
What this reveals is that optimal resampling cannot be ob-
tained from optimal sampling for non-bandlimited signals.
Consequently, while consistent sampling is optimal for sam-
pling without noise, oblique and quasi interpolation methods
cannot guarantee that optimal resampling can be achieved.

Recently, the consistent resampling theory (CRT) has been
proposed to resample signals with non-bandlimited response in
an optimal way [14]. When used to evaluate the performance
of de-interlacing, CRT produces consistent result with the
intuitive answer, which can not be achieved using consistent
sampling theory. In this paper, we apply CRT to image resizing
and rotation. A digital filter is designed to implement the
correction filter derived by CRT. We show by experimental
results that CRT outperforms existing linear methods without
increasing computational cost.

II. CONSISTENT RESAMPLING THEORY

The consistent sampling theory developed in [7] proposed a
new criteria to compare continuous signals when the sampling
and interpolation function are non-ideal, as is often the case
in image processing. CRT resembles the consistent sampling
theory. But it is more than a simple extension since measuring
the difference between the input and output is very different for
a resampling system compared to a sampling/reconstruction
system.

CRT proposes that resampling is consistent if the output
discrete signal appears to be the same as the input discrete
signal as far as the interpolation function is concerned. In
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Fig. 1. The consistent resampling system with the correction filter.



other words, to the interpolation function, both input and
output signals describe the same analog signal. In general,
for any arbitrary φ and ψ, a resampling system will not be
consistent. However, a digital correction filter q[n] can be
incorporated into the system in the way shown in Fig. 1
to achieve consistent resampling. The following proposition
provides a formula for the design of this correction filter.

Proposition 1: Let

Cφψ(ω) =
∑
m,n

cφψ[n,m]ejω(m−nTr) (1)

be the frequency response of the sampled cross correlation
{cφψ[n,m]}m,n∈Z of φ( xT ) and ψ( xT ′ ) where

cφψ[n,m] =
∫
x

φ
( x
T
− n

)
ψ
( x
T ′
−m

)
dx (2)

with Tr = T/T ′. Similarly, let Cφφd
(ω) be that of
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Then the resampling system in Figure 1 is consistent if the
frequency response of the digital correction filter is

Q(ω) =
Cφφd

(ω)
Cφψ(ω)

(4)

Since Tr = T/T ′ is generally not an integer, (m − nTr)
is also typically a non-integer. Therefore, the conventional
impulse invariant approach cannot be used to obtain the
impulse response implemented by ideal sampling its contin-
uous counterpart which enforces consistent resampling. The
following proposition derives the formula for the continuous
filter.

Proposition 2: Replace q[n] in Fig. 1 by a continuous filter
q(x). Resampling is consistent if the frequency response of
correction filter q(x) satisfies:

Q(Ω) =
Φd(Ω)
Ψ(Ω)

(5)

where φd(x) is the dual operator of φ.

III. IMAGE RESIZING

Now we consider the application of consistent resampling to
image resizing. In our experiments, an image is either enlarged
by a factor of 1.25 or reduced to 0.8 of its size. These factors
are chosen arbitrarily and any other factors could have been
chosen instead.

Four different resampling techniques are considered. They
are: (1) classic interpolation; (2) oblique interpolation [11];
(3) quasi interpolation [12] and (4) consistent resampling. In
order to obtain a fair comparison, the interpolating function
used by all four techniques is the first order B-spline β1 where
β1(x) = 1 for x ∈ [−1, 1] and 0 otherwise. We also set the
length of the correction filter in all cases to be 3.

The correction filter for consistent resampling is obtained
by (4) in Proposition 1. It is implemented by sampling the

Fig. 2. The original Rays image.

continuous correction filter q(x) defined by Proposition 2 at
rate T ′. Since ψ(x) = δ(x) and Ψ(Ω) = 1, from (5), Q(Ω) =
Φd(Ω). Therefore

Q(Ω) = B1
d(Ω) =
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)
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To sample q(x) at T ′, the frequency response of the sequence
{q[nT ′]}n∈Z, Q(ω) is related to Q(Ω) by setting Ω = ω

T ′ ,
therefore

Q(ω) = Q(Ω)|Ω=ω/T ′ =
sinc2

(
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2T ′

)
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(
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For digital correction filter q[n] of length 3, we have

Q(ω) = [c−1e
jω + c0 + c1e

−jω]−1

=
[
c0 + c1(ejω + e−jω)−1

]−1
(8)

for some constants c0 and c1 = c−1. Using Taylor’s expansion
to express (7) and set (7) = (8), when T ′ = 0.8, it can be
worked out that b = 4

75 and a = 67
75 . Therefore Q(ω) is given

by

Q(ω) =
75/4

ejω + 67/4 + e−jω
(9)

For zooming out to 0.8 of its size, T = 1 and T ′ = 1.25. The
correction filter is given by

Q(ω) =
592/25

ejω + 542/25 + e−jω
(10)

Note that in both cases q[n] are IIR filters with symmetric
structure. Such filter can be easily implemented using the
techniques developed in [15]. The ”Rays” image which is an
artificial image with high frequency components is used in
our experiment, as shown in Fig. 2. The image is enlarged
by a factor of 1.25 eight consecutive times. Subsequently, the
enlarged image is reduced to 0.8 of its size eight consecutive
times so the resulting image has the same size as the original.
Fig. 3 shows the resulting images.

When an image is zoomed in and out several times, artifacts
are created due to aliasing and blurring, especially for the
high frequency components. The Rays image contains mainly
high frequency components. Using classic interpolation, the



(a) Classic Interpolation (b) Oblique Interpolation

(c) Quasi Interpolation (d) Consistent Resampling

Fig. 3. The Rays image after eight consecutive enlargements followed by
eight consecutive reductions.

TABLE I
PSNR FOR IMAGE ZOOMED OUT BY 1.25 FOR 8 CONSECUTIVE TIMES,

FOLLOWED BY ZOOMED IN BY 0.8 FOR 8 CONSECUTIVE TIMES.

PSNR Rays Lena Pepper Head

Classic 17.24 59.20 54.17 42.59

Oblique 24.71 61.21 54.62 50.58

Quasi 23.87 65.93 55.25 53.20

Consistent 29.96 66.01 56.17 55.64

details are completely missing near the lower left corner
(see Fig. 3(a)). The details are better preserved by oblique
interpolation as can be observed from Fig. 3(b). However,
the effect of overshoot, i.e. increased contrast, is particularly
evident near the borders of the image. The quasi interpolation
method does not preserve the high frequency components as
well as oblique interpolation. As shown in Fig. 3(c), on one
hand, details at the left lower corner has partly disappeared
and the check pattern is invisible. However, the blurred area
is significant less than that obtained by classic interpolation.

Consistent resampling outperforms the other three tech-
niques in preserving high frequency components. As shown in
Fig. 3(d), the check pattern is well recognizable. The contrast
and intensity of the image is unchanged as well. Other images
are tested as well and the PSNR is recorded in Table I. It
can be observed that consistent resampling produces the best
visual results and highest PSNR among the four techniques
considered.

Note that a 3-tap correction filter is used for consistent
resampling in order to make the comparisons fair. If a higher
order filter is used, then the high frequency components of the
images will be even better preserved by consistent resampling.
Fig. 4 shows the result obtained by using a 5-tap correction

Fig. 4. Using a 5th order correction filter on the Rays image.

filter on the Rays image. The resultant PSNR is 43.22dB which
more than doubled the improvement made by a 3-tap filter over
the classic technique.

IV. IMAGE ROTATION

Image rotation by an angle θ anti-clockwise is usually
performed by multiplying the image with the rotation matrix
R(θ) [16]

R(θ) =
[

1 − tan θ
2

0 1

]
︸ ︷︷ ︸

A

[
1 0

sin θ 1

]
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2
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A

Thus the multiplication with the rotation matrix R(θ) can
be separated into three sequential steps – multiplication by
matrices A, B and A. For a pixel at coordinates (m,n) in the
original image, after the first step its new coordinates (m′, n′)
are given by m′ = m − n tan θ

2 and n′ = n, that is, the
row index m is translated by −n tan θ/2 while the column
index n is unchanged. This is a 1-D process. Similarly, in the
second step, multiplication by matrix B leaves the row index
unchanged while the column index is translated by m sin θ.
Thus the whole transformation process can be decomposed
into a sequence of 1-D translations, as shown in Fig. 5.

Existing methods for rotation based on this three-step
process are focused on the design of appropriate translation
algorithms [16]. We interpret the decomposed rotation process
from a new angle. Assume that the size of the image is
R × C pixels as shown in Fig. 5(a). After the first step,
each column is translated and so the image becomes what
is shown in Fig. 5(b). Therefore, each row in the original
image is effectively resized by a the factor of L1 = C ′/C =√

1 + tan2 θ/2. Assuming that the sampling period of the
original signal is T = 1, the resampling period is given by
T ′ = 1/L1. Similarly, in the second step each column is
resized from R1 to R′1 as shown in Fig. 5(c). The resizing
factor is L2 = R′1/R1 =

√
1 + sin2 θ and the corresponding

resampling period is T ′ = 1/L2. In the third step, the columns
of the image in Fig. 5(c) is translated in the same way as in
the first step. The resizing factor is L1 = C ′2/C2.

Since the rotation process has now been formulated as a
sequence of resizing operations, we can make use of our
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Fig. 5. Illustration of decomposed rotation process.

(a) Classic Interpolation (b) By CRT

Fig. 6. After twelve rotations of 30◦ by classic resampling and consistent
resampling.

consistent resampling system to perform the rotation. For
a given interpolation function φ and the parameters T and
T ′, a consistent correction filter can be designed similarly in
Section III Note that resizing factors L1 and L2 are functions
of θ only and does not depend on the size of the image, the
correction filters are applicable to images of any size.

The image Boat is used to test our result. It is rotated
30◦ anti-clockwise twelve times. Fig. 6(a) shows the results
obtained using the conventional method for rotation as imple-
mented by the “imrotate” function in MATLAB. The interpo-
lation method chosen is ‘bilinear’. For a fair comparison, we
use β1 as the interpolation function for consistent resampling.
Fig. 6(b) shows the results obtained using correction filtering.
It is obvious that the fine details of the image are highly
preserved since consistent resampling does not assume a
bandlimited signal.

Four other images – Lena, Barbara, Baboon and Camera, are
tested as well and the resultant PSNR are recorded in Table II.

V. CONCLUSION

In this paper we demonstrate the practical use of CRT to
image resizing and rotation. We designed IIR filters which
approximate the desired response of the optimal CRT solution.
The improvement in performance in comparison to the direct

TABLE II
PSNR (DB) AFTER 12 ROTATIONS OF 30◦ .

Lenna Barbara Baboon Boat Camera
Classic 57.9 45.97 39.55 49.83 46.82

Consistent 64.53 54.16 49.07 60.08 51.26

applications of consistent sampling theory to image processing
is demonstrated through our experimental results.

Our consistent resampling approach to image resizing and
rotation is simple and flexible. It simply involves computing
the resampling factor and then obtaining the correction filter
based on the interpolation function chosen. The computational
complexity grows linearly with the size of the image and the
order of the correction filter, which is the same as other linear
algorithms.
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