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ABSTRACT 
Current state-of-the-art neural network-based Question 
Answering (QA) systems consist of both Recurrent Neural 
Networks (RNNs) and Feedforward Neural Networks (FFNNs). 
They generally performed well on 19 of the 20 tasks in the 
benchmark bAbI dataset. The only task that they failed badly is a 
task involving inductive reasoning where the order of the facts is 
not important in producing the correct answer. In this paper, we 
removed the RNNs from DMN+ QA system to form the ff-DMN 
system. The results demonstrate that ff-DMN improves the 
accuracy of the induction task significantly. Further experiments 
reveal that using RNNs is important if intra-sentence reasoning 
is required while it may adversely affect the performance if 
inter-sentence reasoning is involved. Finally, by incorporating ff-
DMN and DMN+ our ensemble model outperforms the other QA 
systems on all the 20 tasks. 
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1 Introduction 
In recent years question answering (QA), one of the most 
challenging areas in natural language processing (NLP), has 
experienced a significant growth due to the advances of Deep 
Neural Networks (DNNs) [1-3]. End-to-end neural network-
based QA systems are trained to predict the answer to a question 
based on a set of statements of facts (the story). They can be 
incorporated into conversational systems and chatbots to 
provide replies to users when questions are raised. 

Most DNNs are either feedforward neural networks (FFNN) 
or recurrent neural networks (RNN). However, the most 
successful neural network-based QA systems typically consist of 
both FFNNs and RNNs. They include MemN2N [4], DMN+ [5], t-
MEM-NN [6], EnDMN [7] and CAN [8]. They are able to achieve 
very good accuracies on the tasks in the benchmark bAbI dataset 
[9] that requires sequential and deductive reasoning skills. The 
RNNs in these systems play an important role in learning 
sequential and contextual information that are required for these 
tasks. 

The only task that these systems performs poorly is task 16 of 
the bAbI dataset which involves inductive reasoning. The 
prediction accuracy is typically around 50% only. An example of 
the induction task is shown in Figure 1, with the three 
supporting facts highlighted. It is interesting to note that for this 
task, the order by which the relevant facts are presented is not 
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Figure 1: An example of the induction task 

1 Lily is a swan. 
2 Julius is a lion. 
3 Brian is a frog. 
4 Bernhard is a lion. 
5 Greg is a frog. 
6 Greg is green. 
7 Julius is grey. 
8 Bernhard is grey. 
9 Lily is white. 
10 What color is Brian?  green 
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important. This raises the question whether the presence of 
RNNs in the system may actually adversely affect the 
performance of the system for such tasks. 

In this paper, we investigate the performance of using a 
feedforward version of DMN+ for this particular task.  This 
modified system will be referred to as ff-DMN and is obtained by 
removing all the RNNs from DMN+. Experimental results 
demonstrate that the accuracy for the induction task using ff-
DMN improves significantly compared with using DMN+. For 
other tasks where that requires more inter-sentence reasoning, 
results indicate that the performance of ff-DMN is very 
competitive compared with that of DMN+. However, for the 
tasks that requires strongly intra-sentence reasoning, using 
RNNs is essential. 

The rest of this paper is organized as follows. A brief review 
of the DMN+ QA system is presented in Section 2. This is 
followed in Section 3 by our modified ff-DMN architecture. 
Experimental results using the bAbI dataset are presented in 
Section 4 with discussions on their significance. Finally, the 
conclusions are drawn in Section 5.  

2 The DMN+ QA System 
 

The architecture of DMN+ is illustrated in Figure 2. The vector 
𝑥𝑖  represents a concatenation of word embeddings 

[𝑤1
(𝑖)

, … , 𝑤𝐿𝑖

(𝑖)
]  ∈ ℝ𝑉 where 𝐿𝑖 is the total number of words in 

the 𝑖𝑡ℎ sentence and V is the dimension of the embedding vector.  

𝑥𝑖 is encoded into an initial sentence vector 𝑠𝑖 by a position 
encoder (PE): 

•  𝑠𝑖 = 𝑃𝐸(𝑤1
(𝑖)

, … , 𝑤𝐿𝑖

(𝑖)
) (1) 

A sequence of N sentences [𝑠1, … , 𝑠𝑁  ], is fed into an RNN 
made up of bi-directional GRU (BiGRU) [10]. It forms the context 
fusion layer which enables the order of the sentences to be 
learnt. The outputs of this layer  𝑭 = [𝑓1 , 𝑓2, … , 𝑓𝑁] ∈ ℝ𝑉 forms 
the input to the episodic memory. Another input to the episodic 
memory is the last state of a forward GRU that encodes the 
vector of word embeddings [𝑤1,   ⋯ ,𝑤𝑀] ∈ ℝ𝑉 for the question, 
where M is the number of words in the question. 

The episodic memory module consists of several hops to 
retrieve information from sentence representations by paying 
attention to sentences in the story. Each hop contains the 
following components: attention gates {𝑔𝑖}𝑖=1

𝑁  calculation, 
attention based GRU to generate the context vector and update 
of the episodic memory vector for output to the next hop. The 
attention gate for 𝑓𝑖 at hop t is given by 

•  𝑧𝑖
(𝑡)

= 𝑊1(𝜑([𝑞, 𝑚𝑡 , 𝑠𝑖])) + 𝑏1 (2) 

•  𝜏𝑖
(𝑡)

= 𝑊2 tanh (𝑧𝑖
(𝑡)

) + 𝑏2  (3) 

GRU [𝑤1,   … ,𝑤𝑄] 
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Figure 2: Block diagram of DMN+ QA System. 
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•  𝑔𝑖
(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝜏𝑖

(𝑡)
) (4) 

 where 𝑚𝑡 is the memory vector at hop t,  and 𝜑([𝑞, 𝑚𝑡, 𝑠𝑖]) =

[𝑠𝑖 ∙ 𝑞;  𝑠𝑖 ∙ 𝑚𝑡;  |𝑠𝑖 − 𝑞|; |𝑠𝑖 − 𝑚𝑡|]  ∈ 𝑅4𝑉 .  
The attention based GRUs are standard GRUs with the update 

gate replaced by attention gates. In this way, the positional and 
ordering information of the sentences is recorded, and the 
sentences with relatively higher attention gates are preserved in 
a context vector 𝑐(𝑡). This latent context representation is then 
passed to the memory update component which is a feedforward 
neural network with the ReLU activation. The episodic memory 
vector of the last hop is used to predict the answer.  

3 The Proposed ff-DMN model 
The work in [11] shows that removing the RNN in the episodic 
memory module helps to improve the generalization capability 
on the induction task since in this task the order of the facts is 
not important. We conjecture that the RNNs used in the other 
places may also have a negative influence on the learning of this 
task. Hence, we propose to discard all the RNNs, in the form of 
BiGRU, from the architecture. More specifically, remove the 
GRUs from the context fusion module, the episodic memory 
module and question encoding module. Experiments confirms 
our speculation.  

Figure 3 shows the architecture of the feedforward version of 
DMN+ which will be called ff-DMN. All RNNs in the DMN+ 
architecture shown in Figure 2 have been removed. The question 

vector q is obtained by element-wise summation of the word 
embeddings in the question: 

•  𝑞 =  ∑ 𝑤𝑞𝑖

𝑀

𝑖=1

 (5) 

With the BiGRU in the context fusion module discarded, as a 
result, the sentence vectors [𝑠1, … , 𝑠𝑁 ]  from the position 
encoders is directly passed to the episodic memory module. 
Instead of using an attention GRU to generate the context vector 
in each hop, a summation of the sentence vectors weighted by 
their corresponding attention weights is calculated as the 
episodic memory vector: 

•  𝑒𝑡 =  ∑ 𝑔𝑖𝑠𝑖

𝑁

𝑖=1

 (6) 

The memory update component is replaced by an identity 
function. The episodic memory vector and question vector are 
then passed into the linear feedforward answer module followed 
by the softmax operation to produce the predicted answer: 

•  𝑦̂ =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊([𝑞, 𝑚𝑇])) (7) 

4 Experiments 

4.1 Dataset 
The dataset used in our experiments is the bAbI 10k dataset. This 
dataset has 10k training samples and 1k testing samples. The 10k 
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Figure 3: Block diagram of the ff-DMN QA System. 
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training samples are split into an 8:2 ratio for training and 
validation purposes respectively.  

Out of the 20 tasks in the dataset, there are eight tasks, listed 
in Table 1, in which the order of the relevant facts is 
unimportant. These 8 tasks can be categorized into two groups. 
The first group consists of four tasks requires mainly the inter-
sentence reasoning. An example is task 15 and an instance of 
that is shown in Figure 4 (a). The second group consists of the 
other four tasks where intra-sentence reasoning is crucial. An 
example is task 18 with an instance shown in Figure 4 (b).  

Table 1: The 8 tasks for which the order of facts is unimportant 

Reasoning types tasks 

inter-sentence 

5: Three Argument Relations 

15: Basic Deduction 

16: Basic Induction 

20: Agent’s Motivations 

intra-sentence 

4: Two Argument Relations 

17: Positional Reasoning 

18: Size Reasoning 

19: Path Finding 

 

4.2 Training Setup 
We use the Adam optimizer [12] for training with a learning rate 
of 0.001. The Glorot uniform initialization [13] procedure is used 
for all the trainable weights. The word embeddings are randomly 

initialized with a uniform distribution in the range [−√3, √3] 
and trained along with the other weights. Three hops are used in 
the episodic memory to balance the predictive accuracy and the 
computational efficiency. The training objective is to minimize 
the cross-entropy loss ℒ(𝑦̂, 𝑦; 𝝎) =  − ∑ 𝑦𝑖 log(𝑦̂𝑖)𝐾

𝑖 , where K is 
the number of categories. 
 

In order to compare the performance of the systems for 
individual tasks, they are trained independently with the data for 
each task. 

4.3 Results 
The prediction accuracies of the trained ff-DMN and the other 
QA systems benchmarked on the induction task in bAbI dataset 
are shown in Figure 5, which clearly depicts that our proposed 
ff-DMN outperforms all the other systems significantly. It 
improves upon the basic LSTM by 74.2% and upon DMN+ by 
42.5%. It suggests that incorporating RNNs may hinder the 
system to learn to reason inductively.  

Figure 5: Test accuracies of different QA systems on task 16 

induction 

Figure 6 shows the validation losses of the two models on 
task 16 during training. As training progresses, the loss for ff-
DMN continues to trend downwards. However, for DMN+, after 
the first few epochs the validation loss starts to increase. This 
suggests that DMN+ has a serious overfitting problem on this 
task. 

1 Mice are afraid of wolves. 
2 Gertrude is a mouse. 
3 Cats are afraid of sheep. 
4 Winona is a mouse. 
5 Sheep are afraid of wolves. 
6 Wolves are afraid of cats. 
7 Emily is a mouse. 
8 Jessica is a wolf. 
9 What is Gertrude afraid of?   wolf   2 1 

1 The suitcase fits inside the box. 
2 The chocolate fits inside the box. 
3 The container is bigger than the box of chocolates. 
4 The container is bigger than the suitcase. 
5 The box is bigger than the box of chocolates. 
6 The container is bigger than the chocolate. 
7 The chocolate fits inside the container. 
8 The chocolate fits inside the suitcase. 
9 The chocolate fits inside the chest. 
10 The suitcase fits inside the container. 
11 Does the box fit in the chocolate? no  8 1 

(a) (b) 

 

Figure 4: (a) An example of task 15; (b) an example of task 18 
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In order to see the performance of ff-DMN on the other non-
sequential tasks demonstrated in Table 1, we report the results in 
Table 2. Furthermore, the results for the other tasks in this group 
(tasks 5, 15 and 20) show that the performance of ff-DMN is 
comparable to DMN+. 

The results of the intra-sentence group of tasks in Table 2 
show that DMN+ has much higher prediction accuracy in all 
these four tasks. For tasks 17, 18 and 19, it seems without RNNs, 

ff-DMN has difficulty in learning properly. This suggests that 
incorporating RNNs is crucial for the system to learn this type of 
reasoning ability.  

We also build the ensemble model with DMN+ and ff-DMN. 
The results shown in Table 3 shows that the ensemble model 
outperforms the other systems on all the 20 tasks. The mean test 
accuracy 99.5% is the highest among all the systems. 

 

            Table 2: Test accuracies of our ensemble model and the other QA systems 

Tasks Ensemble DMN+ LSTM MemN2N t-MEM-NN EnDMN 

1: Single Supporting Fact 100.0 100.0 50.0 100.0 100.0 100.0 

2: Two Supporting Facts 99.8 99.7 20.0 99.7 82.0 98.6 

3: Three Supporting Facts 98.9 98.9 20.0 97.9 57.0 88.8 

4: Two Argument Relations 100.0 100.0 61.0 96.2 96.0 100.0 

5: Three Argument Relations 99.7 99.5 70.0 85.9 88.0 99.4 

6: Yes/No Questions 100.0 100.0 48.0 99.9 78.0 100.0 

7: Counting 98.1 97.6 49.0 98.0 81.0 97.7 

8: Lists/Sets 100.0 100.0 45.0 99.1 89.0 100.0 

9: Simple Negation 100.0 100.0 64.0 99.7 86.0 100.0 

10: Indefinite Knowledge 100.0 100.0 44.0 100.0 84.0 100.0 

11: Basic Coreference 100.0 100.0 72.0 99.9 97.0 100.0 

12: Conjunction 100.0 100.0 74.0 100.0 99.0 100.0 

13: Compound Coreference 100.0 100.0 94.0 100.0 90.0 100.0 

14: Time Reasoning 100.0 99.8 27.0 99.9 89.0 98.5 

15: Basic Deduction 100.0 100.0 21.0 100.0 100.0 100.0 

16: Basic Induction 97.6 54.7 23.0 47.9 46.0 54.2 

17: Positional Reasoning 96.7 95.8 51.0 49.9 53.0 94.9 

18: Size Reasoning 98.5 97.9 52.0 86.4 91.0 98.5 

19: Path Finding 100.0 100.0 8.0 12.6 14.0 100.0 

20: Agent’s Motivations 100.0 100.0 91.0 100.0 100.0 100.0 

Mean test accuracy 99.5 97.2 51.9 88.7 81.0 96.5 
 

          Table 3: Prediction accuracies of ff-DMN and DMN+ on non-sequential tasks 

Reasoning 
types 

tasks ff-DMN DMN+ LSTM MemN2N t-MEM-NN EnDMN 

Inter-
sentence 

5: Three Argument Relations 91.4 99.5 70.0 85.9 88.0 99.4 
15: Basic Deduction 100.0 100.0 21.0 100.0 100.0 100.0 
16: Basic Induction 97.2 54.7 23.0 47.9 46.0 54.2 
20: Agent’s Motivations 100.0 100.0 91.0 100.0 100.0 100.0 

Intra-
sentence 

4: Two Argument Relations 77.9 100.0 61.0 96.2 96.0 100.0 
17: Positional Reasoning 55.3 95.8 51.0 49.9 53.0 94.9 
18: Size Reasoning 52.7 97.9 52.0 86.4 91.0 98.5 
19: Path Finding 51.4 100.0 8.0 12.6 14.0 100.0 
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4 Conclusions 
By using two different architectures, one with a mixture of 
RNNs and FFNNs and another with only FFNNs, we studied the 
role RNN plays in a QA system. We used the tasks in the bAbI 
dataset for which the orders of facts are unimportant to compare 
the performance of the two architectures. The results show that 
for those tasks that involves inter-sentence reasoning, applying 
RNNs is not always beneficial. In fact, for task 16 that requires 
inductive reasoning, it is harmful. Removing RNN can 
remarkably improve the performance on this task. However, 
using RNN is crucial for the tasks that involves intra-sentence 
reasoning. By incorporating ff-DMN and DMN+, our ensemble 
model outperforms the other QA systems on all the 20 tasks. 
Future work will explore how the two types of reasoning could 
be solved by some mechanism in a single QA system. 
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