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Abstract—This paper considers the application of finite-time
control to a Cucker-Smale flocking model of autonomous agents
with collision avoidance. A mathematical expression for the upper
bound on the flocking time is derived. Previous results without
considering collision avoidance showed that the flocking time
decreases as the number of robots in the flock increases, which
is counter-intuitive. We showed that, with collision avoidance, the
flocking time indeed increases with the flock size. Our mathe-
matical results are verified by computer simulation. Simulation
results also show that certain control parameters and noise can
be used to reduce the flocking time.

Index Terms—Finite-time, Cucker-Smale Model, Flocking, Col-
lision Avoidance

I. INTRODUCTION

Swarm robotics is concerned with the design and deploy-
ment of a large group of autonomous robots (or agents) to
achieve certain tasks collectively [1]–[3]. The coordination
of such a robot swarm is typically inspired by the emer-
gent collective behaviours observed in nature. An important
emergent collective behaviours is flocking, where robots self-
organized into an ordered motion (velocity alignment) from
a disordered initial state. Several models of flocking exist
that provide us with some understanding of this emergent
behaviour [4]–[6]. In [5], a deterministic model is proposed
which consists of three simple steering rules: separation, align-
ment and cohesion. Since it is a computational model rather
than mathematical model, it has been successfully applied
to simulation of flocking behaviour in computer animation.
Its disadvantage is that it is not amenable to mathematical
analyses.

A popular model of alignment is proposed in [6], commonly
known as the Vicsek model. It consists of point-like self-
propelled particles that move at the same speed but in a
random direction initially. Each particle updates the direction
of its velocity by averaging those of its neighbours within
a certain distance. It has been shown that a phase transition
could occur and the particles become aligned and move in
the same direction after some time. A mathematical proof of
convergence is difficult, and often relies on assumptions on
the way convergence. Cucker and Smale [4] then proposed
a flocking model based on which asymptotic convergence
is guaranteed when certain initial conditions are satisfied.
It is commonly referred to as the Cucker-Smale model and
has the added advantage of being a continuous-time model.
For a group of N autonomous robots, the state of robot i

(1 ≤ i ≤ N ), is described by its position pi and velocity vi in
the following way:

ṗi = vi

v̇i = 1
N

N∑
j=1

ψ(‖pj − pi‖)(vj − vi)
(1)

where ψ is a positive decreasing function of the Euclidean
distance between two robots. It is commonly known as the
communication rate function and is given by

ψ(‖pj − pi‖) =
1

(1 + ‖pj − pi‖2)β
(2)

It quantifies the influence of robot j on the velocity of robot
i. It has been proven mathematically in [4] that flocking
will emerge if β < 1/2. For β ≥ 1/2, however, flocking
is conditional on the initial state of the system. Both the
Vicsek and the original Cucker-Smale models do not consider
collision avoidance which is important for practical applica-
tions. Recently, the Cucker-Smale model has been extended
by including a repelling force between robots to the original
model to maintain a minimum distance between robots to
avoid collision [7].

While these asymptotic convergence results are useful, in
practical applications, it is desirable to ensure that flocking
occurs within a finite time. Finite-time control was first con-
sidered in [8]. Since then, it has been studied from several
different perspectives. In [9], a class of output feedback
controllers that can achieve global finite-time stability for the
double integrator system are proposed. Finite-time consensus
algorithms have been developed for second-order [10], [11] as
well as nonlinear agent dynamics [12]. Consensus with fixed
and switching undirected topologies was considered in [13].
The authors showed that when a particular type of nonlinear
inter-agent interaction is used, consensus can be reached in
finite time. Distributed finite-time tracking and containment
control are investigated in [14]–[17]. A distributed finite-
time tracking protocol has been designed for networks with
Euler-Lagrange agent dynamics [17]. It should be pointed out
that finite-time convergence cannot take place in Lipschitz
continuous systems. This is why the control actions have to be
either discontinuous, non-smooth or non-Lipschitz continuous.

Recently, finite-time control theory has been applied to the
Cucker-Smale model. In [18], [19], the original Cucker-Smale
model has been modified to be non-Lipschitz continuous so



that a finite upper bound on the flocking time could be
established. An interesting result is that this flocking time
bound decreases as the diameter of the flock N increases.
This seems to imply that if we want to lower the maximum
flocking time, all we need to do is to increase the number of
robots. But this phenomenon is caused by the fact that the
model does not consider collisions of the robots. In practice,
increasing the size of the flock will increase the chance of
collision and so the flocking time should be higher than the
above theoretical bound.

The objective of this paper is to establish an upper bound
on the flocking time of a swarm of Cucker-Smale agents with
collision avoidance using finite-time control. This theoretic
result is then verified by computer simulation. Furthermore,
we studied the effects of various finite-time control parameters
on the flocking time as well as the flock diameter. We also
studied the effect of uncertainty in the velocity estimates on
the flocking time.

A brief introduction to finite-time control and a definition
of flocking are presented in Section II. This is followed by
a description of the finite-time Cucker-Smale model with
collision avoidance that is studied in this paper. In Section IV,
we present the mathematical proof that velocity consensus can
be achieved in finite-time using this model and obtained a
mathematical expression for an upper bound to the flocking
time. Computer simulation results are presented in Section V.

II. PRELIMINARIES

A. Definition of Flocking

Flocking is said to be achieved when the following two
conditions are satisfied for a group of robots. It has been
defined a very similar way in [18], where the difference of all
velocities tends to zero in finite time and the diameter of the
group is bounded. To investigate the control of flock diameter,
the flocking would be defined as follows:

1) The velocity of every robot is virtually the same, i.e. for
an arbitrarily small δ > 0,

|vi − vj | ≤ δ (3)

for all i, j ∈ [1, N ], i 6= j. The flocking time is defined
as Tf = inf{T : |vi − vj | ≤ δ}.
A useful measure is the average normalized velocity
which is defined as [6]

va =

∑N
i=1 vi

∑N
i=1 |vi|

(4)

The above condition is equivalent to |1 − va| < δ′ for
some small δ′ > 0.

2) The distance between any two robots is bounded by a
positive finite constant ε which we shall refer to as the
flock diameter. That is,

0 < sup
t≥Tf

‖pi − pj‖ < ε (5)

for all 1 ≤ i, j ≤ N .

B. Finite-time Control Theory

It has been known that bang-bang control can be used to
drive a feedback control system to its equilibrium point in a
time-optimal manner [20]. However, the discontinuous control
law could cause problems such as chattering [21]. To overcome
this problem, time-optimal continuous and bounded controllers
were first considered in [8]. The author proposed first and
second order dynamic equations for the controller that can be
shown to reach equilibrium within a finite time, as opposed
to asymptotic convergence of conventional controllers. These
controllers are known as finite-time controllers.

Finite-time control was later put on a more rigorous theo-
retical footing by [22]. The authors showed that the control
law

u = −l1sgn(x1)|x1|α1 − l2sgn(x2)|x2|α2 (6)

where
0 < α1 < 1, α2 =

2α1

1 + α1
, (7)

sgn(s) =


1, s > 0

0, s = 0

−1, s < 0

(8)

and l1, l2 > 0 are able to stabilize in finite-time a double
integrator system with dynamics described by

ẋ1 = x2, ẋ2 = u. (9)

This control law is a homogeneous function of degree α2

and it is continuous. This dynamical system has been shown
to be globally finite-time stable. Most significantly, by using
Lyapunov stability theory, the authors were able to derive an
upper bound for the settling time.

The convergence time is obtained in [25] using the following
lemma. Our proof of the convergence time for the Cucker-
Smale model with colllision avoidance in Section III is also
based on the same lemma.

Lemma 1: Assume that a continuous, positive-definite func-
tion V (t) satisfies the following differential inequality:

V̇ (t) ≤ −kV ρ(t)

where k, ρ are two constants. Then, for any given t0, V (t)
satisfies the following inequality:

V 1−ρ(t) ≤ V 1−ρ(t0)− k(1− ρ)(t− t0), t0 ≤ t ≤ t1,

and V (t) ≡ 0, t ≥ t1 with t1 is given by t1 = t0 +
[V (t0)1−ρ]/k(1− ρ).

III. FINITE-TIME CUCKER-SMALE MODEL WITH
COLLISION AVOIDANCE

One way to prevent robots in a swarm from colliding is
to introduce a repelling force between robots. This repelling
force should come into effect when two robots are too close
to each other. Let d0 > 0 be the minimum distance between
any two robots such that if ‖pj − pi‖ ≤ d0, then we consider
that robots i and j have collided. A repelling force function
can be used. In [24], it has been suggested that this repelling



force function f : (d0,∞]→ [0,∞) should have the following
properties: {∫ d1

d0
f(r)dr =∞∫∞

d1
f(r)dr <∞

(10)

for some d1 > d0. By incorporate this function into (1), we
have a new Cucker-Smale system with collision avoidance:

ṗi = vi

v̇i = 1
N

N∑
j=1

ψ(‖pj − pi‖)(vj − vi)

+ 1
N

∑
j 6=i

f(‖pj − pi‖2)(pj − pi)

(11)

for 1 ≤ i ≤ N . Here, f(·) is the repelling function.
Finite-time control (6) can now be applied to (11). In this

case, pi and vi are x1 and x2 in (6) respectively. The finite-
time controlled Cucker-Smale model with collision avoidance
is therefore given by:

ṗi = vi

v̇i = 1
N

N∑
j=1

ψ(‖pj − pi‖)sgn(vj − vi)θ

− 1
N l1

∑
j 6=i

f(‖pj − pi‖2)sgn(vj − vi)α1

− 1
N l2

∑
j 6=i

f(‖pj − pi‖2)sgn(pi − pj)α2

(12)

for 1 ≤ i ≤ N . Here, we used the notation

sgn(x)α = sgn(x)|x|α (13)

where α ∈ R. The finite-time control parameters must satisfy
(7), and 0 < θ < 1, l1, l2 > 0.

There are three terms on the right-hand side of v̇i in (12).
The first one is to achieve finite-time flocking which is similar
to [18], [19]. The other two terms are utilized to adjust
velocities to ensure collision does not occur. We shall denote
the finite-time convergence of each of these terms by T0, T1
and T2 respectively.

IV. FLOCKING TIME

We shall now prove that the flocking time of the system
given by (12) is finite.

Theorem 1: The velocities of the autonomous robots in the
system given by (12) converges to the same velocity in a finite
amount of time with an upper bound Tf given by

Tf ≤ max{T0, T1, T2} (14)

where

T0 = C0N
− θ+1

2 , C0 =
2V (0)

1−θ
2

ψ∗
√

2
θ+1

(1− θ)

T1 = C1N
−α1

2 , C1 =
4V (0)1−

α1
2

l1M
√

2
α1

(2− α1)

T2 = C2N
−α2

2 , C2 =
4V (0)1−

α2
2

l2M
√

2
α2

(2− α2)

V (0) =

N∑
i=1

‖vi(0)‖2

(15)

T0 is to achieve flocking behaviour, and it has been proven
in [18], [19], where the communication rate ψ from 2 satisfies
a lower bound conditions. In other words, there exists ψ∗ > 0
such that infs≥0ψ(s) ≥ ψ∗. T1 and T2 are to avoid collision
that would be proved in this paper.

Proof: From [18], [19], proving the finite-time conver-
gence of velocity is the same as proving V (t) tends to zero in
finite time. Applying finite-time control (6) to (12), we have

V̇ (t) =
2

N

N∑
i=1

N∑
j=1

viψ(‖pj − pi‖)sgn(vj − vi)θ

− 1

N
l1

N∑
i=1

∑
j 6=i

f(‖pj − pi‖2)sgn(vj − vi)α1

− 1

N
l2

N∑
i=1

∑
j 6=i

f(‖pj − pi‖2)sgn(pi − pj)α2

(16)

It consists of three terms which we shall denote by V̇0(t),
V̇1(t) and V̇2(t) respectively.

It has been proven in [18], [19] that V̇0(t) converges in
finite time. Using Lemma 1, Vi(t) ≡ 0, i = 1, 2, . . . , N for
t ≥ T0 with T0 given by (15). Now we shall deal with the
terms V̇1(t) and V̇2(t) which are related to collision avoidance.
Since f is a non-increasing function according to (10), there
exists a constant M such that, for all i 6= j and t ∈ [0, T ),
f(‖pj − pi‖2) ≤M [24]. Thus,

V̇1(t) = −l1
N∑
i=1

∑
j 6=i

f(‖pj − pi‖2)sgn(vj − vi)|vj − vi|α1

≤ − 1

N
l1

N∑
i=1

∑
j 6=i

f(‖pj − pi‖2)|vj − vi|α1

≤ − 1

N
l1M

N∑
i=1

∑
j 6=i

|vj − vi|α1

= − 1

N
l1M

N∑
i=1

∑
j 6=i

(|vj − vi|2)
α1
2

≤ − 1

N
l1M(2N)

α1
2 V (t)

α1
2

We can apply Lemma 1 to V̇1(t) similar to V̇0(t) and hence
T1 is given by (15).

Applying the upper bound of f to V̇2(t) in a similar way,



we obtain

V̇2(t) =− 1

N
l2

N∑
i=1

∑
j 6=i

f(‖pj − pi‖2)sgn(pi − pj)|pi − pj |α2

≤− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|pi − pj |α2

=− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|
∫ t

0

vi(t)−
∫ t

0

vj(t)|α2

=− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|(vi(t)− vj(t))

+ (vj(0)− vi(0))|α2

Since 0 < α2 < 1,

V̇2(t) ≤− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|vi(t)− vj(t)|α2

− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|vj(0)− vi(0)|α2

=− 1

N
l2M(2N)

α2
2 V (t)

α2
2

− 1

N
l2M(2N)

α2
2

N∑
i=1

∑
j 6=i

|vj(0)− vi(0)|α2

≤− 1

N
l2M(2N)

α2
2 V (t)

α2
2

Therefore we can apply Lemma 1 again to obtain T2 given
in (15). Hence the theorem is proved.

In addition to alignment of velocity, flocking requires that
the flock diameter be finite. We shall now demonstrate that
P(t) is bounded [18]. We have

Ṗ (t) = 2

N∑
i=1

< pi, vi >

≤ 2

N∑
i=1

‖pi‖‖vi‖

≤ 2P
1
2 (t)V

1
2 (t)

(17)

Assume that P (t) ≤ Γ(t), where Γ(t) satisfies Γ̇(t) =
2Γ

1
2 (t)V

1
2 (t) with Γ(0) = P (0). Then we have

Γ
1
2 (t) = Γ

1
2 (0) +

∫ t

0

V
1
2 (s)ds (18)

and

P
1
2 (t) = P

1
2 (0) +

∫ t

0

V
1
2 (s)ds (19)

Since V (t) ≡ 0 after t > Tf ,

P
1
2 (t) = P

1
2 (0) +

∫ Tf

0

V
1
2 (s)ds

= P
1
2 (0) + V (0) (Tf ) <∞

Thus the robots are flocking after Tf .

TABLE I
FLOCK DIAMETER

N Flock Diameter Flock Diameter
With Collision Avoidance Without Collision Avoidance

10 0.9611 0.8507
15 0.9997 0.8960
20 1.0259 0.9027
25 1.0641 0.9082
30 1.1328 0.9281
35 1.1790 0.9466
40 1.2277 0.9639
45 1.2578 0.9845
50 1.2843 1.0030

V. SIMULATION RESULTS

The flocking time given by (14) will be compared with
computer simulation results. We consider robots moving in
an infinitely large two-dimensional space. Consequently, they
will not encounter any boundaries. Each robot moves with the
same speed but initially at a random direction. For simplicity,
the communication rate ψ is assumed to be 1. This is consistent
with previously published results in [18] and elsewhere.

For convenience, distances and time shall be dimensionless.
Each robot moves with a constant speed of 0.5 per unit
time. The initial direction is uniformly random in [0, 2π). The
distances d1 and d0 for the repelling force are set at 0.3 and
0.2, respectively. The maximum value of repelling function
is fixed at 5. The system is considered to be in a flocking
state when va ≥ 0.99. The flock diameter is measured when
this condition occurs. Each simulation scenario is repeated
20 times with different random initial values. The results
presented are the average values.

A. Flocking Time and Diameter

First, we shall verify that the flocking time derived in The-
orem 1 is correct using simulation. Apart from the parameters
specified above, the remaining ones used in this part of the
simulation are: θ = 1/2, α1 = 1/2, α2 = 2/3 and l1 = 1,
l2 = 1. Figure 1 shows the flocking times computed from (14)
for different values of N , and compared with the simulation
results. The graph shows that the upper bound of the flocking
time is correct. However, the bound is not particularly tight.

As the total number of robots N increases, the flocking time
increases significantly. Figure 2 shows the simulation results
with and without collision avoidance. Without considering
collision avoidance, as in [18], [19], flocking time decreases
as N increases. For instance, with N = 50, the flocking time
is approximately 1.43 with collision avoidance compared with
less than 0.2 without collision avoidance. Thus the conver-
gence results without considering collision are obviously over
optimistic.

Table I shows the flock diameters when the velocities are
aligned. The values indicate that the flock remains tight which
indicates that flocking does occur. Flock diameters are slightly
larger with repelling force in place.
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Fig. 5. Flocking Time of the Different Value of Repelling Function

B. Effects of Flocking Control Parameters

Next, we consider the effects of the flocking control pa-
rameters α1, α2, l1, l2 and M on the flocking time. Figure 3
shows the effect of α1 and α2 on the flocking time for α1 =
{1/4, 1/3, 1/2, 2/3, 1, 3/2, 2}. Here, θ = 0.5, l1 = l2 = 1,
M = 5. Recall that α2 is related to α1 by α2 = 2α1

1+α1
. Other

parameters are the same as in previous simulations. These
results show that for all flock sizes considered, reducing α1

will result in a shorter flock time.
Figure 4 shows the effects of varying l1 and l2 In this case,

we used α1 = 1/2, α2 = 2/3, M = 5, and N = 30. The
blue curve shows the flocking time with l2 = 1 and l1 =
{1, 5, 10, 20, 50, 100}. The red curve has l1 = 1 and l2 varying
instead. These results show that flocking time could be reduced
by increasing l1 and/or l2. Increasing l1 has a more pronounced
effect on the flocking time compared with l2.

Next, we consider the effects of strength of the repelling
function. With l1 = l2 = 1, α1 = 1/2 and α2 = 2/3, the
effect on the flocking time for M = {5, 10, 20, 50, 100} is
shown in Figure 5. It clearly shows that the flocking time
reduces as M increases. But it is at the expense of a larger
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flock diameter.
Finally, we examine the effect of noise on the velocity

adjustment for each robot similar to the way it is commonly
done with the Vicsek model. The amount of noise is uniformly
distributed between [−η, η] where η ∈ (0, 2π). Figure 6 shows
that the flocking time decreases as noise is increased. Noise
is particularly effective in reducing flocking time for larger
flocks.

VI. CONCLUSIONS

In this paper, finite-time control is applied to a Cucker-
Smale flocking model with collision avoidance. Convergence
is mathematically proved and an upper bound of the flocking
time is derived. The mathematical results have been verified by
computer simulations. They show that flocking time increases
with the flock size which is different from results reported pre-
viously for Cucker-Smale models without collision avoidance.
Results also show that control parameters l1 and l2 as well as
the repelling force strength and noise can be used to reduce
the flocking time.
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