
HARDWARE EFFICIENT DCT IMPLEMENTATION FOR PORTABLE
MULTIMEDIA TERMINALS USING SUBEXPRESSION SHARING

A.P.Vinod and E.M-K.Lai

School of Computer Engineering, Nanyang Technological University

Nanyang Avenue, Singapore 639798
Email: {asvinod, asmklai}@ntu.edu.sg

ABSTRACT

Low-power and high-speed implementation of discrete
cosine transform (DCT) for mobile multimedia
terminals presents a hardware design challenge. The
cost of DCT implementation is dominated by the
complexity of the multiplier. The systolic array and the
memory-based designs do not consider the
optimization of the multiplications in transform coding.
A method to minimize the complexity of multiplication
in DCT by efficient sharing of the common
subexpressions that occur in the canonic signed digit
(CSD) representation of the elements of the DCT
matrix is presented here. Design example of a 88×
DCT using 16 bits shows that our method offers
hardware reduction of 38% over conventional method.

1. INTRODUCTION

The discrete cosine transform (DCT) has been widely
recognized as the most effective technique among
various transform-coding methods for image and video
signal compression standards such as JPEG, MPEG,
H.261 and H.263 [1]. As these standards find
applications on the battery-operated systems such as
portable computers, personal digital assistants (PDA)
and portable communication equipments, it becomes
imperative to design a low-power and high-speed DCT
chip. The multiplier is the most power-consuming
element in a DCT chip employed for portable
multimedia applications. In CMOS technology, there
are three sources of power dissipation arising from:
switching (dynamic) currents, short-circuit currents,
and leakage currents. Among these parameters, the
switching component, which is a function of the
effective capacitance, plays the most significant role
[2]. It is possible to reduce power consumption by
employing transformations such as reductions in
critical path, number of operations, and average
transition activity. These transformations result in
architectures that minimize the effective capacitance of
the circuit [2]. The critical path and transition activity
can be minimized by employing efficient multiplication
structures, as shown in the later part of this paper.
Once these two parameters are optimized, the most

obvious approach for capacitance reduction is to
minimize the number of operations (and hence the
number of switching events) in the data control flow
graph. In a DCT chip, the number of operations is
dominated by the amount of multiplication. Several
techniques for efficient multiplication of the input data
with the DCT coefficients have been proposed [3-7].
To meet the real-time video processing requirement,
DCT implementations often use efficient dedicated
hardware units that lead to high-speed but high
hardware cost [3]. The multipliers used in the systolic
array based designs [4], [5] consume a large silicon
area, and hence these designs are not power efficient.
The ROM based designs [6], [7] proposed to overcome
the drawback of the systolic array designs reduce the
complexity of multiplication by employing efficient
ROM access operations. However, these designs [3-7]
do not consider the optimization of the computationally
intensive multiplication of the input data (image) with
the DCT matrix, which is crucial in low-power
implementations. In this paper, the numerical property
of the elements of the DCT matrix is exploited to
reduce the hardware cost. A method to implement low-
complexity DCT using common subexpression sharing
technique [8] is presented here.

The paper is organized as follows. In section 2, we
analyze the complexity of multiplication in the DCT.
The common subexpression sharing method is
discussed in section 3. In section 4, we illustrate the
implementation of DCT with design examples. Section
5 provides our conclusions.

2. MULTIPLIER COMPLEXITY IN DCT

The NN × DCT matrix),(nkcC = is defined as [1]:

















 +

=

N
kn

N

N
nkc

2
)12(cos2

1

),(
π

Using matrix notation, the DCT coefficients (Y) is
obtained from :CUY =

for 0=k and 10 −≤≤ Nn

for 11 −≤≤ Nk and
10 −≤≤ Nn

(1)























=













































=

NN

N

y

y
y

u

u
c c cc

Y
.
.

.

.

u

c . . . c c
.
.

c . . . c c c
 . . .

2

1

2

1

NNN2N1

2N232221

1131211

 (2)

where iu is the input data matrix and ijc represent the

elements of the DCT matrix. In digital systems,
multiplication of a variable (image data, iu) with a
constant (DCT matrix elements, ijc) is implemented

using shifts and adds by representing the constant in
CSD.

Definition 1 (Canonic Signed Digit, CSD): The number

021 ...bbb NN −− is said to be in CSD representation if
no two nonzero digits are consecutive and the number
of nonzero digits is minimal, where { }.1 ,1 ,0 −+∈ib

In the case of a DCT chip for a specific application, the
transform length (N) is fixed and hence the elements of
the DCT matrix (C) are constants. Therefore, the shifts
(decided by the CSD representations of the constants)
can be hardwired, which is less expensive and hence
the adder cost determines the hardware complexity.
There are two classes of adders in a DCT structure,
which are defined as follows.
Definition 2 (Inter-structure Adders): The adders used
for computing the sum of the products, ,.∑ iij uc to

obtain the output matrix)(Y are called inter-structure
adders.
It requires 2N multiplications and)1(−NN additions
to compute Y. For example, the first element of Y is
computed using
 NN ucucucy 12121111 +++= (3)
The adders used to compute (3) are called inter-
structural adders. If N is 8, it requires 7 (i.e., N-1)
adders to obtain .1y
Definition 3 (Intra-structure Adders): The adders used
for computing the products, ,. iij uc are called intra-

structure adders. In conventional implementation of
multiplication using shifts and adds, if the number of
nonzero bits in the CSD representation of ijc is ,bN

the number of intra-structure adders, (),aN required to
compute iij uc . is

 1−= ba NN (4)
For example, consider the example of the
multiplication to obtain the first term of (3),

..)1(1 111 ucy = Assume

+++=== −−− 631
11 222011010010101.06458.0c

.222 12108 −−− ++ The product)1(1y can be
expressed as

108631)1(1 11111 >>+>>+>>+>>+>>= uuuuuy
121 >>+u (5)

where 1u is the data (image) and ‘>>’ represents shift
right operation. The adders used to compute (5) are
called intra-structure adders. In this case, bN is 6 and
five intra-structure adders are required to obtain 111.uc
as in (5).

The objective of the design methods [3-7] is to reduce
the number of inter-structure adders in DCT
implementation by exploiting the redundancies in the
values of .ijc However, the actual cost of

implementation is dominated by the cost of multipliers
required to compute the products, ,. iij uc i.e., intra-

structure adders. These works [3-7] do not address the
hardware cost of each of these multiplications. We
present a comparison of the hardware cost in terms of
inter-structure and intra-structure adders required to
obtain (3) for .8=N For convenience, we assume that
an identical number of adders are required to obtain
each term).(iij uc in (3). (The actual adder

requirement depends on the number of nonzero bits in
the CSD representations of the DCT matrix elements,

181312 ,..., CCC). Thus a total of forty intra-structure
adders (considering 8 multiplications, requiring 5
adders per multiplication) are required to compute the
products, ,,... ,. 818212111 ucucuc of (3). Note that this
adder requirement is substantially higher than the
number of inter-structure adders (i.e., 7 adders) of (3).
Therefore, a more apparent goal of reducing the
number of operations (for reducing power) is to
minimize the number of intra-structure adders. In next
section, we show that the constant property of DCT
matrix can be exploited to reduce the number of
operations (intra-structure additions) for a low-power
implementation.

3. COMMON SUBEXPRESSION SHARING

The goal of Hartley’s common subexpression
elimination (CSE) [8], which was originally proposed
for digital filters, is to identify multiple occurrences of
identical bit patterns that are present within each filter
coefficient. Since the computation of multiple identical
expressions needs to be implemented only once, the
resources necessary for these operations can be shared.
We reformulate the CSE technique in the context of
DCT here. The pattern [1 0 1] in the above-mentioned
example of 11c is present thrice, which can be
expressed as a common subexpression (CS),

 2112 >>+= uuu (6)
Using the CS, the expression (5) can be written as
 1061)1(1 222 >>+>>+>>= uuuy (7)

Hence the multiplication structure optimized using the
CSE given by (6) and (7) requires two adders less than
the original structure of (5). Thus using CSE, the
number of adders required to implement the
multiplication is minimized. However, unlike the filter
type operations, the direct application of CSE to DCT
will not offer significant hardware reduction. In the
case of a filter, the CSE can be applied to exploit the
redundancies in multiplication of one variable (signal,
x) with multiple constants (coefficients,)(nh). On the
other hand, such multiplications (multiplication of a
data element with multiple DCT matrix elements) do
not occur in the direct implementation of DCT. Note
that each data)(iu is multiplied with distinct element

ijc in (3). Therefore, we need to reformulate the DCT

matrix for efficient substitution of CSE.

3.1. Reformulation of DCT for CSE

Let us consider the expressions for the output Y in (2):
 NN ucucucy 12121111 +++=
 NN ucucucy 22221212 +++=

 NNNNNN ucucucy 2211 +++= (8)
The objective of our method is to minimize the intra-
structure adders required for computing the products,

.. iij uc It can be seen from (8) that each data needs to

be multiplied with several constants. For example, the
data 1u is multiplied with ,,.... , 12111 Nccc which can
be expressed as

 []TNcccu 121111 (9)
By sharing the CS that exist in the matrix elements ijc

in (9), the number of intra-structure adders can be
reduced. Thus, in order to obtain the products ,. iij uc

the DCT computation can be reformulated as
[]TNcccu 121111

[]TNcccu 222122

 []TNNNNN cccu 21 (10)
The CSE technique can be applied for efficient
computation of (10).

4. DESIGN EXAMPLE

We present the design of a 88× DCT using the CSE
method reformulated in previous section. The DCT
matrix is obtained using (1). Due to space constraints,
we illustrate the implementation of (9) and the same

method can be extended to obtain (10). The DCT
matrix elements, ,ijc of (9) are listed in Table I (Note

that N is taken as 8).

11c 0.3536 51c 0.3536

21c 0.4904 61c 0.2778

31c 0.4619 71c 0.1913

41c 0.4157 81c 0.0975

The CS present in the 12-bit CSD representation of
these elements are shown in Fig. 1. The numbers in the
first row of Fig. 1 represent the number of bitwise right
shifts. The number of intra-structure adders, (),aN
required to compute iij uc . in conventional method can

be determined using (4). For example, in the case of
,11c ,6=bN and hence five adders are required to

obtain .. 111 uc Similarly, it can be determined from Fig.
1 that a total of thirty-one intra-structure adders are
required to obtain (9) in conventional method. Using
CS, the bit patterns [1 0 –1] (shown inside the solid
rectangle), and [1 0 1] (dotted rectangle) in Fig. 1 can
be expressed as
 2112 >>−= uuu and 2113 >>+= uuu (11)
Using (11), we can express 111.uc as
 1062 322111 >>+>>−>>= uuuuc (12)
Note that only two adders are needed to compute (12).
Table II lists the expressions for computing the
products, iij uc . of (9). It requires only sixteen adders

(fourteen adders in Table I and two adders for
obtaining the CS (11)) to implement (9). This is a
reduction of 48% over conventional method. Using
CSE, the total number of intra-structure adders required
to obtain all the products of the 88× DCT (i.e., when

8=N in (10)) is 130, whereas the adder requirement
is 210 in conventional implementation. Thus, the adder
reduction achieved using the CSE is 38%. The critical
path length and the transition activity also need to be
minimized apart from reducing the number of
additions. We employ the tree-structure shown in Fig.
2, which performs parallel addition to implement the
multiplication. The input operands shown in Fig. 2
represent the data iu shifted corresponding to the bit
positions in the CSD representation of .ijc

Definition 4 (Adder-step): One addition stage in a
maximal path of decomposed multiplications is termed
the adder-step (AS).
Definition 5 (Critical path): The number of adder-steps
in a multiplication structure is called the critical path.
The number of adder-steps,),(nA required to compute

Table I DCT matrix elements of (9)

Fig. 2. Tree structure used for addition.

the sum of n operands is given by .2 nnA ≥ From this,
we obtain

 







=

)2(log
)(log

10

10 nAn (13)

The nA obtained (13) is the lowest number of adder-
steps (lower bound) possible to achieve in an addition
structure since the tree structure considered in our
method performs parallel addition. Therefore, our
method always results in a minimum adder-step
implementation and hence has the lowest critical path.
Moreover, when compared with a chain (serial)
implementation, the signal paths are more balanced in a
tree implementation and hence the amount of extra
transitions is reduced.

 1

2 3 4 5 6 7 8 9 10 11 12

11c 0 1 0 -1 0 -1 0 1 0 1 0 1

21c 0 1 0 0 0 1 0 -1 0 -1 0 -1

31c 0 1 0 0 0 -1 0 -1 0 1 0 -1

41c 0 1 0 -1 0 1 0 1 0 -1 0 0

51c 0 1 0 -1 0 -1 0 1 0 1 0 0

61c 0 0 1 0 1 0 1 0 -1 0 0 -1

71c 0 0 1 0 -1 0 0 1 0 -1 0 0

81c 0 0 0 1 0 -1 0 0 0 1 0 -1

Fig. 1.CS in the CSD form of ijc in (9).

111.uc 1062 322 >>+>>−>> uuu

121.uc 1062 321 >>−>>+>> uuu

131.uc 1062 231 >>+>>−>> uuu

141.uc 1062 132 >>−>>+>> uuu

151.uc 1062 122 >>+>>−>> uuu

161.uc 1273 123 >>−>>+>> uuu

171.uc 83 22 >>+>> uu

181.uc 104 22 >>+>> uu

Table II Expressions for computing the
products, iij uc . of (9)

6. REFERENCES

[1] K. R. Rao and J. J. Hwang, Techniques and Standards for
Image, Video and Audio Coding. Englewood Cliffs, NJ:
Prentice-Hall, 1996.
[2] A. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey,
and R. W. Brodersen, “Optimizing power using
transformations,” IEEE Trans. On CAD, vol. 14, no. 1, pp.
12-31, Jan. 1995.
[3] P. Pirsch, N. Ranganathan, “VLSI architectures for video
compression-A survey,” Proc. IEEE, vol. 83, pp. 220-246,
Feb. 1995.
[4] L. W. Chang and M. C. Wu, “A unified systolic array for
discrete cosine and sine transforms,” IEEE Trans. Signal
Processing, vol. 39, pp. 192-194, Jan. 1991.
[5] J. I. Guo, C. M. Liu, and C. W. Jen, “A new array
architecture for prime length discrete cosine transform,”
IEEE Trans. Signal Processing, vol. 41, no. 1, pp. 436-442,
1993.
[6] D. Slawecki and W. Li, “DCT/IDCT processor design for
high data rate image coding,” IEEE Trans. Circuits Syst.
Video Technology, vol. 2, pp. 135-146, June 1992.
[7] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient
memory-based VLSI arrays for DFT and DCT,” IEEE
Trans.Circuits Syst. II, vol. 39, no. 10, pp. 723-733, 1992.
[8] R. I. Hartley, “Subexpression sharing in filters using

canonic signed digit multipliers,” IEEE Trans. Circuits Syst.
II, vol. 43, pp. 677-688, Oct. 1996.

5. CONCLUSIONS

We have proposed an efficient method based on CSE
for low-complexity implementation of a DCT chip.
The complexity of multiplication in DCT is analyzed.
While the conventional low-power implementation
methods focus on reducing the number of inter-
structure adders, our method is based on minimizing
the number of intra-structure adders, which is the
most power-consuming component in a DCT chip.
Our method results in a multiplication structure that
has minimum number of operations, critical path and
transition, and hence offers a power efficient solution.

