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ABSTRACT 
 
Low-power and high-speed implementation of discrete 
cosine transform (DCT) for mobile multimedia 
terminals presents a hardware design challenge. The 
cost of DCT implementation is dominated by the 
complexity of the multiplier. The systolic array and the 
memory-based designs do not consider the 
optimization of the multiplications in transform coding. 
A method to minimize the complexity of multiplication 
in DCT by efficient sharing of the common 
subexpressions that occur in the canonic signed digit 
(CSD) representation of the elements of the DCT 
matrix is presented here. Design example of a 88×  
DCT using 16 bits shows that our method offers 
hardware reduction of 38% over conventional method.  
 

1. INTRODUCTION 
 
The discrete cosine transform (DCT) has been widely 
recognized as the most effective technique among 
various transform-coding methods for image and video 
signal compression standards such as JPEG, MPEG, 
H.261 and H.263 [1]. As these standards find 
applications on the battery-operated systems such as 
portable computers, personal digital assistants (PDA) 
and portable communication equipments, it becomes 
imperative to design a low-power and high-speed DCT 
chip. The multiplier is the most power-consuming 
element in a DCT chip employed for portable 
multimedia applications. In CMOS technology, there 
are three sources of power dissipation arising from: 
switching (dynamic) currents, short-circuit currents, 
and leakage currents. Among these parameters, the 
switching component, which is a function of the 
effective capacitance, plays the most significant role 
[2]. It is possible to reduce power consumption by 
employing transformations such as reductions in 
critical path, number of operations, and average 
transition activity. These transformations result in 
architectures that minimize the effective capacitance of 
the circuit [2]. The critical path and transition activity 
can be minimized by employing efficient multiplication 
structures, as shown in the later part of this paper.  
Once these two parameters are optimized, the most 

obvious approach for capacitance reduction is to 
minimize the number of operations (and hence the 
number of switching events) in the data control flow 
graph. In a DCT chip, the number of operations is 
dominated by the amount of multiplication. Several 
techniques for efficient multiplication of the input data 
with the DCT coefficients have been proposed [3-7]. 
To meet the real-time video processing requirement, 
DCT implementations often use efficient dedicated 
hardware units that lead to high-speed but high 
hardware cost [3]. The multipliers used in the systolic 
array based designs [4], [5] consume a large silicon 
area, and hence these designs are not power efficient. 
The ROM based designs [6], [7] proposed to overcome 
the drawback of the systolic array designs reduce the 
complexity of multiplication by employing efficient 
ROM access operations. However, these designs [3-7] 
do not consider the optimization of the computationally 
intensive multiplication of the input data (image) with 
the DCT matrix, which is crucial in low-power 
implementations. In this paper, the numerical property 
of the elements of the DCT matrix is exploited to 
reduce the hardware cost. A method to implement low-
complexity DCT using common subexpression sharing 
technique [8] is presented here.  
 
The paper is organized as follows. In section 2, we 
analyze the complexity of multiplication in the DCT. 
The common subexpression sharing method is 
discussed in section 3. In section 4, we illustrate the 
implementation of DCT with design examples. Section 
5 provides our conclusions.  
 

2. MULTIPLIER COMPLEXITY IN DCT 
 
The NN ×  DCT matrix ),( nkcC =  is defined as [1]: 
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Using matrix notation, the DCT coefficients (Y) is 
obtained from :CUY =  

for 0=k  and 10 −≤≤ Nn  

for 11 −≤≤ Nk  and
10 −≤≤ Nn

(1)
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where iu  is the input data matrix and ijc  represent the 

elements of the DCT matrix. In digital systems, 
multiplication of a variable (image data, iu ) with a 
constant (DCT matrix elements, ijc ) is implemented 

using shifts and adds by representing the constant in 
CSD. 
 
Definition 1 (Canonic Signed Digit, CSD): The number 

021 ...bbb NN −−  is said to be in CSD representation if 
no two nonzero digits are consecutive and the number 
of nonzero digits is minimal, where { }.1 ,1 ,0 −+∈ib   
 
In the case of a DCT chip for a specific application, the 
transform length (N) is fixed and hence the elements of 
the DCT matrix (C) are constants. Therefore, the shifts 
(decided by the CSD representations of the constants) 
can be hardwired, which is less expensive and hence 
the adder cost determines the hardware complexity. 
There are two classes of adders in a DCT structure, 
which are defined as follows. 
Definition 2 (Inter-structure Adders): The adders used 
for computing the sum of the products, ,.∑ iij uc to 

obtain the output matrix )(Y  are called inter-structure 
adders. 
It requires 2N  multiplications and )1( −NN  additions 
to compute Y. For example, the first element of Y is 
computed using 
                   NN ucucucy ...... 12121111 +++=            (3)              
The adders used to compute (3) are called inter-
structural adders. If N is 8, it requires 7 (i.e., N-1) 
adders to obtain .1y  
Definition 3 (Intra-structure Adders): The adders used 
for computing the products, ,. iij uc  are called intra-

structure adders. In conventional implementation of 
multiplication using shifts and adds, if the number of 
nonzero bits in the CSD representation of ijc  is ,bN  

the number of intra-structure adders, ( ),aN  required to 
compute iij uc .  is     

     1−= ba NN                              (4)                       
For example, consider the example of the 
multiplication to obtain the first term of (3), 

..)1(1 111 ucy =  Assume 

+++=== −−− 631
11 222011010010101.06458.0c

.222 12108 −−− ++  The product )1(1y  can be 
expressed as 

108631)1(1 11111 >>+>>+>>+>>+>>= uuuuuy
121 >>+u                                                       (5) 

where 1u  is the data (image) and ‘>>’ represents shift 
right operation. The adders used to compute (5) are 
called intra-structure adders. In this case, bN  is 6 and 
five intra-structure adders are required to obtain 111.uc  
as in (5). 
 
The objective of the design methods [3-7] is to reduce 
the number of inter-structure adders in DCT 
implementation by exploiting the redundancies in the 
values of .ijc  However, the actual cost of 

implementation is dominated by the cost of multipliers 
required to compute the products, ,. iij uc  i.e., intra-

structure adders. These works [3-7] do not address the 
hardware cost of each of these multiplications. We 
present a comparison of the hardware cost in terms of 
inter-structure and intra-structure adders required to 
obtain (3) for .8=N  For convenience, we assume that 
an identical number of adders are required to obtain 
each term ).( iij uc  in (3). (The actual adder 

requirement depends on the number of nonzero bits in 
the CSD representations of the DCT matrix elements, 

181312 ,..., CCC ). Thus a total of forty intra-structure 
adders (considering 8 multiplications, requiring 5 
adders per multiplication) are required to compute the 
products, ,,... ,. 818212111 ucucuc  of (3). Note that this 
adder requirement is substantially higher than the 
number of inter-structure adders (i.e., 7 adders) of (3). 
Therefore, a more apparent goal of reducing the 
number of operations (for reducing power) is to 
minimize the number of intra-structure adders. In next 
section, we show that the constant property of DCT 
matrix can be exploited to reduce the number of 
operations (intra-structure additions) for a low-power 
implementation. 
 

3. COMMON SUBEXPRESSION SHARING 
 
The goal of Hartley’s common subexpression 
elimination (CSE) [8], which was originally proposed 
for digital filters, is to identify multiple occurrences of 
identical bit patterns that are present within each filter 
coefficient. Since the computation of multiple identical 
expressions needs to be implemented only once, the 
resources necessary for these operations can be shared. 
We reformulate the CSE technique in the context of 
DCT here. The pattern [1 0 1] in the above-mentioned 
example of 11c  is present thrice, which can be 
expressed as a common subexpression (CS), 



                        2112 >>+= uuu                   (6) 
Using the CS, the expression (5) can be written as  
         1061)1(1 222 >>+>>+>>= uuuy                (7) 

Hence the multiplication structure optimized using the 
CSE given by (6) and (7) requires two adders less than 
the original structure of (5). Thus using CSE, the 
number of adders required to implement the 
multiplication is minimized. However, unlike the filter 
type operations, the direct application of CSE to DCT 
will not offer significant hardware reduction. In the 
case of a filter, the CSE can be applied to exploit the 
redundancies in multiplication of one variable (signal, 
x ) with multiple constants (coefficients, )(nh ). On the 
other hand, such multiplications (multiplication of a 
data element with multiple DCT matrix elements) do 
not occur in the direct implementation of DCT. Note 
that each data )( iu  is multiplied with distinct element 

ijc  in (3). Therefore, we need to reformulate the DCT 

matrix for efficient substitution of CSE.   
 
3.1. Reformulation of DCT for CSE 
 
Let us consider the expressions for the output Y  in (2):  
             NN ucucucy ...... 12121111 +++=  
             NN ucucucy ...... 22221212 +++=  
              .   .    .    .    .    .    .    .    .    .    . 
            NNNNNN ucucucy ...... 2211 +++=              (8) 
The objective of our method is to minimize the intra-
structure adders required for computing the products, 

.. iij uc  It can be seen from (8) that each data needs to 

be multiplied with several constants. For example, the 
data 1u  is multiplied with ,,....  , 12111 Nccc  which can 
be expressed as  

              [ ]TNcccu 121111 .......   .                     (9) 
By sharing the CS that exist in the matrix elements ijc  

in (9), the number of intra-structure adders can be 
reduced. Thus, in order to obtain the products ,. iij uc  

the DCT computation can be reformulated as 
[ ]TNcccu 121111 .......   .  

[ ]TNcccu 222122 .......   .  
  .    .    .    .    .    .    .     

             [ ]TNNNNN cccu .......   . 21               (10) 
The CSE technique can be applied for efficient 
computation of (10). 
 

4. DESIGN EXAMPLE 
 
We present the design of a 88×  DCT using the CSE 
method reformulated in previous section. The DCT 
matrix is obtained using (1). Due to space constraints, 
we illustrate the implementation of (9) and the same 

method can be extended to obtain (10). The DCT 
matrix elements, ,ijc  of (9) are listed in Table I (Note 

that N is taken as 8). 
 
 

11c  0.3536 51c  0.3536 

21c  0.4904 61c  0.2778 

31c  0.4619 71c  0.1913 

41c  0.4157 81c  0.0975 
 
The CS present in the 12-bit CSD representation of 
these elements are shown in Fig. 1.  The numbers in the 
first row of Fig. 1 represent the number of bitwise right 
shifts. The number of intra-structure adders, ( ),aN  
required to compute iij uc .  in conventional method can 

be determined using (4). For example, in the case of 
,11c  ,6=bN  and hence five adders are required to 

obtain .. 111 uc  Similarly, it can be determined from Fig. 
1 that a total of thirty-one intra-structure adders are 
required to obtain (9) in conventional method. Using 
CS, the bit patterns [1 0 –1] (shown inside the solid 
rectangle), and [1 0 1] (dotted rectangle) in Fig. 1 can 
be expressed as 
       2112 >>−= uuu  and 2113 >>+= uuu        (11)   
Using (11), we can express 111.uc  as 
         1062 322111 >>+>>−>>= uuuuc              (12)  
Note that only two adders are needed to compute (12). 
Table II lists the expressions for computing the 
products, iij uc .  of (9). It requires only sixteen adders 

(fourteen adders in Table I and two adders for 
obtaining the CS (11)) to implement (9). This is a 
reduction of 48% over conventional method. Using 
CSE, the total number of intra-structure adders required 
to obtain all the products of the 88×  DCT (i.e., when 

8=N  in (10)) is 130, whereas the adder requirement 
is 210 in conventional implementation. Thus, the adder 
reduction achieved using the CSE is 38%. The critical 
path length and the transition activity also need to be 
minimized apart from reducing the number of 
additions. We employ the tree-structure shown in Fig. 
2, which performs parallel addition to implement the 
multiplication. The input operands shown in Fig. 2 
represent the data iu  shifted corresponding to the bit 
positions in the CSD representation of .ijc  

Definition 4 (Adder-step): One addition stage in a 
maximal path of decomposed multiplications is termed 
the adder-step (AS). 
Definition 5 (Critical path): The number of adder-steps 
in a multiplication structure is called the critical path. 
The number of adder-steps, ),( nA  required to compute 

Table I DCT matrix elements of (9) 



Fig. 2. Tree structure used for addition.

the sum of n  operands is given by .2 nnA ≥  From this, 
we obtain 
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The nA  obtained (13) is the lowest number of adder-
steps (lower bound) possible to achieve in an addition 
structure since the tree structure considered in our 
method performs parallel addition. Therefore, our 
method always results in a minimum adder-step 
implementation and hence has the lowest critical path. 
Moreover, when compared with a chain (serial) 
implementation, the signal paths are more balanced in a 
tree implementation and hence the amount of extra 
transitions is reduced.  
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2 3 4 5 6 7 8 9 10 11 12 

11c 0 1 0 -1 0 -1 0 1 0 1 0 1 

21c 0 1 0 0 0 1 0 -1 0 -1 0 -1 

31c 0 1 0 0 0 -1 0 -1 0 1 0 -1 

41c 0 1 0 -1 0 1 0 1 0 -1 0 0 

51c 0 1 0 -1 0 -1 0 1 0 1 0 0 

61c 0 0 1 0 1 0 1 0 -1 0 0 -1 

71c 0 0 1 0 -1 0 0 1 0 -1 0 0 

81c 0 0 0 1 0 -1 0 0 0 1 0 -1 

Fig. 1.CS in the CSD form of ijc  in (9).

111.uc  1062 322 >>+>>−>> uuu  

121.uc  1062 321 >>−>>+>> uuu  

131.uc  1062 231 >>+>>−>> uuu  

141.uc  1062 132 >>−>>+>> uuu  

151.uc  1062 122 >>+>>−>> uuu  

161.uc  1273 123 >>−>>+>> uuu  

171.uc  83 22 >>+>> uu  

181.uc  104 22 >>+>> uu  

Table II Expressions for computing the
products, iij uc .  of (9) 
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5. CONCLUSIONS 
 
We have proposed an efficient method based on CSE 
for low-complexity implementation of a DCT chip. 
The complexity of multiplication in DCT is analyzed. 
While the conventional low-power implementation 
methods focus on reducing the number of inter-
structure adders, our method is based on minimizing 
the number of intra-structure adders, which is the 
most power-consuming component in a DCT chip. 
Our method results in a multiplication structure that 
has minimum number of operations, critical path and 
transition, and hence offers a power efficient solution.


