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ABSTRACT N 5 - N
f fx) ~Jfna) f{x £ (nb)
The resampling of discrete-time signals where the underlying ana- | #* g [ e ”
log signal is non-bandlimited is considered in this paper. We extend
the generalized sampling theory developed based on the principle 2. 8(x=na) reconstruction D 8(x—nb)
of consistency to resampling. Realizing the resampling system has ’ " esampling

both discrete input and output, the performance of the resampling

filter is considered in? instead of the traditionally usefi®>. We

show that the performance of the resampling system depends on thgy. 1. Block diagram representation of reconstruction and resam-
resampling rate instead of the actual interpolating kernels. The thgsjing system.

ory can be applied to image processing applications like zooming to

provide better response to high frequency components. Since the re-

sampling prchs_s is discrete in nature, our filter designed to optimize - Thjs paper is organized as follows. The generalized sampling

resampling in'” is shown to outperform other techniques designediheory is reviewed in Section 2. In Section 3, this theory is extended

in L. to resampling systems and the correction filter is redefined subject to
the new optimizing criteria defined in discrete domain. The image

1 INTRODUCTION enlargement example is discussed in Section 4.

Most of the existing techniques for processing discrete-time signals 2. REVIEW OF GENERALIZED SAMPLING THEORY
are based on the (implicit) assumption that the underlying analo o ) ) )
signals are bandlimited. This assumption does not hold for mosthe schematic diagram of the generalized sampling theory is shown
images where sharp edges exists. Therefore, even simple operatidAd-igure 1. Since most of real time signals are energy limited, we
like the enlargement of an image is not trivial since aliasing will berestrict our discussion to the Hilbert spaté
introduced through the interpolation filter. Define the translation operatdy, : L* — L*, Tug(z) = ¢(a—

A recent method proposed in [1] tries to overcome this prob-%); the set of uniformly shifted vectorsimq¢(x)}ne 2 consists of a
lem partially by representing the interpolation and resampling kerfr@me for its closed linear space
nels as polyphase filters. The frequency responses of the polyphase _
filter are equalized and therefore aliasing is reduced. However, high V(9) = span({Tnad(@)}nez) 1)
frequency information will still be lost in the process and is unre-|, caneralized sampling theor the uniform sampfies) of an ana-
cov_erable. Other techniques haye been introduced to prevent di 'ggsignalf(x) are vFi)ew?ed as t?/ie inner productﬁ%ﬁaith a set of
tortion as well as reserve the high frequency components [2, 3 Ctors{ Tnad(a) ne 2
The underlying principle used in these methods is the Generalized
Sampling Theory (GST) fonon-bandlimited continuous-time sig- Tin) — ). _ _
nals [4]. However, as pointed out in [5], the filters designed based f(n) = J(@) x $(=a) - 8(x = na) = {(2), Tnad(@)) ()
on the GST is optimized for an operator definedin— L?;itcan  Similarly, the reconstruction of (x) using f(n) is performed using
not be directly applied to the resampling system, which is associategkctors spanning the reconstruction subsgate)
with an operator fof?> — 2. Furthermore,the filter designed based
on GQST that minimizes thé? error does not necessa_rily minimize  f(z) = Z f(n)TmLp(m) - Z (f(2), Thad(2)) Tnap(z)  (3)
the“ error. Since the generalized sampling theory is developed to -
optimize reconstruction, it can be suboptimal when applied to re-
sampling. Therefore perfect reconstruction can only be achieved whtten €

In this paper, we consider the resampling of discrete-time signal¥ (¥) 8nd(Tma¢(z), Tna@(z)) = dm,n. If this condition is satis-
where the underlying analog signal is non-bandlimited. Our filter isfied. the acquisition filtey(x) is called the ideal prefilter ap(x).
designed to optimize the resampling process in the discrete domaiﬁ)_t_hermse, reconstruction errors (aliasing, distortion) would be in-
The main contributions of this paper are as follows. First, we prove@Vitable. _ _ _
that the performance of the resampling system depends on the resam- The GST loose the constraint from pe~rfect|0n reconstruction to
pling rate instead of the interpolating kernel. Second, we extendegonsistent reconstruction. It requires thaf {fr) is re-injected into
the original GST to resampling and the correction filters obtained arée system, the reconstructed signal should produce the same mea-
optimal for the resampling process. We show by through an exarmsurementsf(na) as the original input. This can be achieved by us-
ple of image enlargement that the our the filter based on our extendédg a correction filtel)) to modified the coefficient set such that the
GST performs better than the one defined by the original GST. signal is projected ontd® () orthogonal toV (¢) [4]. Therefore,

n



the reconstruction errdyf (z) — f(z)|| 2 will be minimized for the  hencel|h(m)||;> < ||k(z)||z2 < co. The sequenck(m) defines a
system with arbitrary(z) ande(x). bounded sequence and thus is invertible provided any dithe is
Let the cross correlation betweeiir) andy(z) is defined by nonzero.
This proposition gives us some distinctive properties of the re-
Agp (k) = (d(x — k), p(2)) (4)  sampling system. The resampling system deals with output in dis-
o ) o ] -~ ] ) crete space generated by shifts of the sequen¢er), while recon-
If it is invertible, then the correction filteR) is specified via the in-  stryction system deals with continuous output in the space generated

version of A4, in the z transform domain: by {Th.a(x)}nez. According to the Proposition 1, any sequence
1 sampled ab falls in the discrete space generated by the pulse train
Qz) = Aye(2) ®) A, despite of the specific choices pfz). That is for all sequence

hly(m), it can be represented by a weighted sum of another se-
quenceh2,(m) despiteh1(z) andh2(z). Therefore, we obtain an
outstanding conclusion in the next proposition

The generalized sampling theory can be described as

Vi(@) e L2, f(z) = > (f(®), Tnad) (Agg * Trat) (x)  (6)
n Proposition 2. Given two sampling rate. and b and the prede-

fined prefilter¢p(—z), the resampling system can always achieves

The term <A;; * Tnasf?) (z) can be interpreted as the quasi-dual the same performance with properly designed correction filter for

operator of the acquisition filter, denoted ylt can be verified that ~ different choices op(z).

¢(z) andg(z) satisfies The performance of any resampling system depends on the dif-

~ ference between acquisition space and the resampling space. For

<Tm¢, Tma¢> =0mmn given a and ¢(—z), according to (1), the acquisition space is de-
fined. On the other hand, since & (m) belongs to the same
There are two advantages of using GST in resampling systengpace {T’,.hs»(m)} also spans the same resampling space. There-

First, by using non bandlimited kernels, the high frequency compofore Proposition 2 is justified.

nents can be preserved. Second, it ensures minimum mean squared For the special case= b,

error when non-ideal operators are used. The resampling system can

be viewed as a two-step process: an implicit reconstruction process span({Tnavs(Mm)tn,mez) = span({es(m)}mez)  (9)

followed by a sampling process [6]. However, as we shall see in

Section 3, the filter designed based on GST that minimized.the No matter howg(z), p(z) € L*(R) is chosen, the system should

error does not necessarily minimize theerror. Since the general- achieve perfect performance in the sense that the discreteﬁmu)t

ized sampling theory is developed to optimize reconstruction, it caan be perfectly reconstructed. When# b, the acquisition space

be suboptimal when applied to resampling. and the synthesis space are generally different. Similar to the recon-
struction system, a correction filter defined the operaifor- 12
3. THE RESAMPLING SYSTEM can be used to project the signal representafiotu) V (¢q) onto

V(¢»). Our next task is to define the correction filter used to achieve
The resampling system differs from the reconstruction system by afinimum error in>. There are two types of resampling system to be
additional sampling stage as shown in Figure 1. Its discrete outputeated Sepagatew, one is of continuous input, or an system defined
f( ) is obtained by samphng“( ) at a rateb which is typically frorg L? 2—> 1*; the other one is of discrete input defining a system
different from the original sampling rate The output of the resam- of I* — I
pling system is given by

fo(m) =" (g% F)(na) Tratp(mb) (7)

n

3.1. Wheng(z) # §(z)

Similar to the correction filter defined in the reconstruction case,
there is one unique correction filter in resampling system such that
The subscripb is used to indicate the sampling rate of the sequencéhe principle of consistency is satisfied.

and is often omitted if it is clear. Obviously, the outpﬂm) € . . N ,
V (0s) where Theorem 1. Consider the resampling system shown in Figure 1 with

¢(—z) # §(x). Define the discrete cross correlation function as
V(@b) = Span{TnaSD(mb)}m,nEZ (8)

Agp(ka) Z ©p(m)d(mb — ka) (10)
Before we state the conclusion, we start with a fundamental result:

Proposition 1. Sampling any continuous functidiiz) € L? atrate  If Ag,(ka) is an invertible operator fronk, — I», there exist a cor-
b, the discrete sequenédm) = h(z)y=ms, m € Z generates the rection filterg = A;; in z transform domain such that the principle
same space as the pulse traly = >~ 6(x —nb) iff h(m) # 0for  of consistency is satisfied:

anym.

Actually this statement requirés,, h(m) to define an invert- (9(@), Tnad(x <Z fo(m), Tnad( )>
ible convolution operator. Since

Proof. By the principle of consistency, Whgﬂmb) is re-injected to
= h(z)é(x — mb)d BN
m) ;/ (2)0(x = mb)dz the system, it should produce the same set of sanjtes). Thus,



it requires that or

. _ > en(k)g(m — k) = dmyo 17
J(na) = (S, Fmb), é(w — na)) ;
~ Therefore, the correction filter is defined as the inverse of the recon-
= >.(g* f)(na) 3, ¢(mb —na)p(mb —ka) (11)  struction filter, sampling at output rate. O

By substitute (7) into the equation, the consistency requirement (11)
is reduced to N N

f(n) = qx fxAgp(n) (12
Therefore, the discrete filteris defined to be4;;. O

3.2. Wheng(z) = 6(z)

The reconstruction system is well defined when the input is either
discrete or continuous. However, in case of the resampling system,
the principle of consistency is not directly applicable under certain
circumstances. Suppose tlidt:) = §(z); the consistency principle
requires that whed fb(m) is resent to the system, its samples at
>°,, 0(xz — na) should be the same as the original continuous signal
does. This is to sample a discrete seque}fitﬁm) at a different rate
a, which is generally not accomplishable.

Therefore, the principle of consistency has to be modified to be
adaptable in the resampling system. Referring to Figurgd) =
f(x) sinceg(x) = §(x). Denote the samplq@(n) = fa(n) and the
shifted filtery, (x — m) = (x — mb). The consistency principle is
restated as _

Principle of consistencyThe sequencg (), if re-injected to  Fig. 2. Enlargement by 2. The bilinear interpolator and correction
the system, should appear the same as the seqyfemgto produce  filter optimized error inL? is used
the same output, or

S Folm) + g+ (@) = F(w) (13)

In reconstruction system, the principle of consistency requires that
the output should appear the same as the input to the same acquisi-
tion space. Therefore, if is resent to the system, the output should
nonetheless bg. The same idea is applied in the resampling system
to derive the condition in (13), which is one step further from "the
same measurement of the acquisition filter” to "the same output of
the reconstruction filter”.

From the modified consistency requirement, the correction filter
can be obtained through the following theorem.

Theorem 2. For resampling system with(x) = §(z), the principle
of consistency can be satisfied uniquelygfkb) is invertible. The
correction filter then can be defined 85z) = ¥, ' (2).

Proof. Substitute (7) into (13) and we have

Y (fora)pp(x—m) = (faxq)(n)palz—n)  (14)

m n

) ) . ) _Fig. 3. Enlargement by 2. The bilinear interpolator and correction
substitute (7) into the LHS of the above equation and it can be rewritjiter optimized error in? is used

ten as

Z(f « @)e(x —m) To generalize the two cases above, we find that when =
b*Q)pel —m é(z), the correction filter can be calculated using (10) with:) =

" 1. Comparing (4) and (10), the correction filter used in the resam-
= D (farx)) DD @p(x —m)pa(kb—n)q(m —@B)  pling case depends much on the resampling batieosen. Because

n m k of this, the correction filter for resampling can be very different from
he one obtained based on GST, even if the acquisition and synthesis
ilters are the same.

Z Z o(kb)g(m — k)p(z — mb) = o(z) (16) In summary, the design of correction filter in the resampling sys-
k m

Compare (15) with the RHS of (14), the consistency is satisfied wit

tem is subject to the requirement that the discrete output should be



consistent with the input, when re-injected into the system. The cor-
rection filter projects the input signal, either continuous or discrete
onto the space oF () such that the different between input and [1]
output measured if¥ is minimized. This criteria is more suitable

for resampling system where both input and output can be discrete.

(2]
4. EXAMPLE

The theory developed above is applied to the example of imag?]
zooming. The interpolator used in image processing application
are generally small kernels like linear or cubic interpolators. Be-
cause they are short in time, their frequency response is bad and will
cause aliasing and distortion which would degrade the quality of thé#]
image. The correction filter defined in Theorem 2 is inserted and the
performance of zooming of fact@with and without the correction
filter is shown in Figure 2 and Figure 3. [5]

We clearly see the improvement of high frequency response due
to the correction filter, which includes the edges of the hat edge, the
feather decorations and hair. The overall distortion of the image is
also reduced as can be observed from the improvement in the textu[r&
of the hat and the face.

5. CONCLUSION

In this paper, we developed an extension to the generalized sampling
theory so that it can be applied to resampling of discrete-time signals.
The underlying analog signal can be non-bandlimited, therefore our
theory could provide better response to the high frequency signal.
We prove that the performance of the resampling system depends
on the resampling rate instead of the interpolating kernels used. A
correction filter is designed to optimize & error instead of the
commonly used.? error. It shows that our filter has better response
when applied to applications like image zooming than other filters
used to optimizd.? error.
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