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ABSTRACT

The resampling of discrete-time signals where the underlying ana-
log signal is non-bandlimited is considered in this paper. We extend
the generalized sampling theory developed based on the principle
of consistency to resampling. Realizing the resampling system has
both discrete input and output, the performance of the resampling
filter is considered inl2 instead of the traditionally usedL2. We
show that the performance of the resampling system depends on the
resampling rate instead of the actual interpolating kernels. The the-
ory can be applied to image processing applications like zooming to
provide better response to high frequency components. Since the re-
sampling process is discrete in nature, our filter designed to optimize
resampling inl2 is shown to outperform other techniques designed
in L2.

1. INTRODUCTION

Most of the existing techniques for processing discrete-time signals
are based on the (implicit) assumption that the underlying analog
signals are bandlimited. This assumption does not hold for most
images where sharp edges exists. Therefore, even simple operations
like the enlargement of an image is not trivial since aliasing will be
introduced through the interpolation filter.

A recent method proposed in [1] tries to overcome this prob-
lem partially by representing the interpolation and resampling ker-
nels as polyphase filters. The frequency responses of the polyphase
filter are equalized and therefore aliasing is reduced. However, high
frequency information will still be lost in the process and is unre-
coverable. Other techniques have been introduced to prevent dis-
tortion as well as reserve the high frequency components [2, 3].
The underlying principle used in these methods is the Generalized
Sampling Theory (GST) fornon-bandlimited continuous-time sig-
nals [4]. However, as pointed out in [5], the filters designed based
on the GST is optimized for an operator defined inl2 → L2; it can
not be directly applied to the resampling system, which is associated
with an operator forl2 → l2. Furthermore,the filter designed based
on GST that minimizes theL2 error does not necessarily minimize
the l2 error. Since the generalized sampling theory is developed to
optimize reconstruction, it can be suboptimal when applied to re-
sampling.

In this paper, we consider the resampling of discrete-time signals
where the underlying analog signal is non-bandlimited. Our filter is
designed to optimize the resampling process in the discrete domain.
The main contributions of this paper are as follows. First, we proved
that the performance of the resampling system depends on the resam-
pling rate instead of the interpolating kernel. Second, we extended
the original GST to resampling and the correction filters obtained are
optimal for the resampling process. We show by through an exam-
ple of image enlargement that the our the filter based on our extended
GST performs better than the one defined by the original GST.
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Fig. 1. Block diagram representation of reconstruction and resam-
pling system.

This paper is organized as follows. The generalized sampling
theory is reviewed in Section 2. In Section 3, this theory is extended
to resampling systems and the correction filter is redefined subject to
the new optimizing criteria defined in discrete domain. The image
enlargement example is discussed in Section 4.

2. REVIEW OF GENERALIZED SAMPLING THEORY

The schematic diagram of the generalized sampling theory is shown
in Figure 1. Since most of real time signals are energy limited, we
restrict our discussion to the Hilbert spaceL2.

Define the translation operatorTa : L2 → L2, Taφ(x) = φ(x−
a); the set of uniformly shifted vectors{Tnaφ(x)}n∈Z consists of a
frame for its closed linear space

V (φ) = span({Tnaφ(x)}n∈Z) (1)

In generalized sampling theory, the uniform samplesf̂(n) of an ana-
log signalf(x) are viewed as the inner product off(x) with a set of
vectors{Tnaφ(x)}n∈Z

f̂(n) = f(x) ∗ φ(−x) · δ(x− na) = 〈f(x), Tnaφ(x)〉 (2)

Similarly, the reconstruction of̃f(x) usingf̂(n) is performed using
vectors spanning the reconstruction subspaceV (ϕ)

f̃(x) =
∑

n

f̂(n)Tnaϕ(x) =
∑

n

〈f(x), Tnaφ(x)〉Tnaϕ(x) (3)

Therefore perfect reconstruction can only be achieved whenf(x) ∈
V (ϕ) and〈Tmaφ(x), Tnaϕ(x)〉 = δm,n. If this condition is satis-
fied, the acquisition filterφ(x) is called the ideal prefilter ofϕ(x).
Otherwise, reconstruction errors (aliasing, distortion) would be in-
evitable.

The GST loose the constraint from perfection reconstruction to
consistent reconstruction. It requires that iff̃(x) is re-injected into
the system, the reconstructed signal should produce the same mea-
surementŝf(na) as the original input. This can be achieved by us-
ing a correction filterQ to modified the coefficient set such that the
signal is projected ontoV (ϕ) orthogonal toV (φ) [4]. Therefore,



the reconstruction error‖f̃(x)− f(x)‖L2 will be minimized for the
system with arbitraryφ(x) andϕ(x).

Let the cross correlation betweenφ(x) andϕ(x) is defined by

Aφϕ(k) = 〈φ(x− k), ϕ(x)〉 (4)

If it is invertible, then the correction filterQ is specified via the in-
version ofAφϕ in thez transform domain:

Q(z) = A−1
φϕ(z) (5)

The generalized sampling theory can be described as

∀f(x) ∈ L2, f̃(x) =
∑

n

〈f(x), Tnaφ〉 (A−1
φϕ ∗ Tnaϕ

)
(x) (6)

The term
(
A−1

φϕ ∗ Tnaϕ
)

(x) can be interpreted as the quasi-dual

operator of the acquisition filter, denoted byφ̃. It can be verified that
φ̃(x) andφ(x) satisfies

〈
Tnaφ, Tmaφ̃

〉
= δm,n

There are two advantages of using GST in resampling system.
First, by using non bandlimited kernels, the high frequency compo-
nents can be preserved. Second, it ensures minimum mean squared
error when non-ideal operators are used. The resampling system can
be viewed as a two-step process: an implicit reconstruction process
followed by a sampling process [6]. However, as we shall see in
Section 3, the filter designed based on GST that minimizes theL2

error does not necessarily minimize thel2 error. Since the general-
ized sampling theory is developed to optimize reconstruction, it can
be suboptimal when applied to resampling.

3. THE RESAMPLING SYSTEM

The resampling system differs from the reconstruction system by an
additional sampling stage as shown in Figure 1. Its discrete output
f̃(m) is obtained by sampling̃f(x) at a rateb which is typically
different from the original sampling ratea. The output of the resam-
pling system is given by

f̃b(m) =
∑

n

(q ∗ f̂)(na)Tnaϕ(mb) (7)

The subscriptb is used to indicate the sampling rate of the sequence
and is often omitted if it is clear. Obviously, the outputf̃(m) ∈
V (ϕb) where

V (ϕb) = Span{Tnaϕ(mb)}m,n∈Z (8)

Before we state the conclusion, we start with a fundamental result:

Proposition 1. Sampling any continuous functionh(x) ∈ L2 at rate
b, the discrete sequenceh(m) = h(x)x=mb, m ∈ Z generates the
same space as the pulse train∆b =

∑
n δ(x−nb) iff h(m) 6= 0 for

anym.

Actually this statement requires
∑

m h(m) to define an invert-
ible convolution operator. Since

∑
m

h(m) =
∑
m

∫
h(x)δ(x−mb)dx

hence‖h(m)‖l2 ≤ ‖h(x)‖L2 < ∞. The sequenceh(m) defines a
bounded sequence and thus is invertible provided any of theh(m) is
nonzero.

This proposition gives us some distinctive properties of the re-
sampling system. The resampling system deals with output in dis-
crete space generated by shifts of the sequenceϕb(m), while recon-
struction system deals with continuous output in the space generated
by {Tnaϕ(x)}n∈Z . According to the Proposition 1, any sequence
sampled atb falls in the discrete space generated by the pulse train
∆b despite of the specific choices ofϕ(x). That is for all sequence
h1b(m), it can be represented by a weighted sum of another se-
quenceh2b(m) despiteh1(x) andh2(x). Therefore, we obtain an
outstanding conclusion in the next proposition

Proposition 2. Given two sampling ratea and b and the prede-
fined prefilterφ(−x), the resampling system can always achieves
the same performance with properly designed correction filter for
different choices ofϕ(x).

The performance of any resampling system depends on the dif-
ference between acquisition space and the resampling space. For
given a andφ(−x), according to (1), the acquisition space is de-
fined. On the other hand, since allϕb(m) belongs to the same
space,{Tnahb(m)} also spans the same resampling space. There-
fore Proposition 2 is justified.

For the special casea = b,

span({Tnaϕb(m)}n,m∈Z) = span({ϕb(m)}m∈Z) (9)

No matter howφ(x), ϕ(x) ∈ L2(R) is chosen, the system should
achieve perfect performance in the sense that the discrete inputf̂a(n)
can be perfectly reconstructed. Whena 6= b, the acquisition space
and the synthesis space are generally different. Similar to the recon-
struction system, a correction filter defined the operationl2 → l2

can be used to project the signal representationf̂(na) V (φa) onto
V (ϕb). Our next task is to define the correction filter used to achieve
minimum error inl2. There are two types of resampling system to be
treated separately, one is of continuous input, or an system defined
from L2 → l2; the other one is of discrete input defining a system
of l2 → l2.

3.1. Whenφ(x) 6= δ(x)

Similar to the correction filter defined in the reconstruction case,
there is one unique correction filter in resampling system such that
the principle of consistency is satisfied.

Theorem 1. Consider the resampling system shown in Figure 1 with
φ(−x) 6= δ(x). Define the discrete cross correlation function as

Aφϕ(ka) =
∑
m

ϕb(m)φ(mb− ka) (10)

If Aφϕ(ka) is an invertible operator froml2 → l2, there exist a cor-
rection filterq = A−1

φϕ in z transform domain such that the principle
of consistency is satisfied:

〈g(x), Tnaφ(x)〉 =

〈∑
m

f̃b(m), Tnaφ(x)

〉

Proof. By the principle of consistency, wheñf(mb) is re-injected to
the system, it should produce the same set of samplesf̂(na). Thus,



it requires that

f̂(na) =
〈∑

m f̃(mb), φ(x− na)
〉

=
∑

n(q ∗ f̂)(na)
∑

m ϕ(mb− na)φ(mb− ka) (11)

By substitute (7) into the equation, the consistency requirement (11)
is reduced to

f̂(n) = q ∗ f̂ ∗Aφϕ(n) (12)

Therefore, the discrete filterq is defined to beA−1
φϕ.

3.2. Whenφ(x) = δ(x)

The reconstruction system is well defined when the input is either
discrete or continuous. However, in case of the resampling system,
the principle of consistency is not directly applicable under certain
circumstances. Suppose thatφ(x) = δ(x); the consistency principle
requires that when

∑
m f̃b(m) is resent to the system, its samples at∑

n δ(x− na) should be the same as the original continuous signal

does. This is to sample a discrete sequencef̃b(m) at a different rate
a, which is generally not accomplishable.

Therefore, the principle of consistency has to be modified to be
adaptable in the resampling system. Referring to Figure 1,f(x) =

f̂(x) sinceφ(x) = δ(x). Denote the sampleŝf(n) = fa(n) and the
shifted filterϕb(x−m) = ϕ(x−mb). The consistency principle is
restated as

Principle of consistency: The sequencẽfb(m), if re-injected to
the system, should appear the same as the sequencef̂(n) to produce
the same output, or

∑
m

f̃b(m) ∗ q ∗ ϕ(x) = f̃(x) (13)

In reconstruction system, the principle of consistency requires that
the output should appear the same as the input to the same acquisi-
tion space. Therefore, if̃f is resent to the system, the output should
nonetheless bẽf . The same idea is applied in the resampling system
to derive the condition in (13), which is one step further from ”the
same measurement of the acquisition filter” to ”the same output of
the reconstruction filter”.

From the modified consistency requirement, the correction filter
can be obtained through the following theorem.

Theorem 2. For resampling system withφ(x) = δ(x), the principle
of consistency can be satisfied uniquely iffϕ(kb) is invertible. The
correction filter then can be defined asQ(z) = Ψ−1

b (z).

Proof. Substitute (7) into (13) and we have
∑
m

(f̃b ∗ q)ϕb(x−m) =
∑

n

(fa ∗ q)(n)ϕa(x− n) (14)

substitute (7) into the LHS of the above equation and it can be rewrit-
ten as

∑
m

(f̃b ∗ q)ϕb(x−m)

=
∑

n

(fa ∗ q)(n)
∑
m

∑

k

ϕb(x−m)ϕa(kb− n)q(m− k)(15)

Compare (15) with the RHS of (14), the consistency is satisfied with
∑

k

∑
m

ϕ(kb)q(m− k)ϕ(x−mb) = ϕ(x) (16)

or ∑

k

ϕb(k)q(m− k) = δm,0 (17)

Therefore, the correction filter is defined as the inverse of the recon-
struction filter, sampling at output rate.

Fig. 2. Enlargement by 2. The bilinear interpolator and correction
filter optimized error inL2 is used

Fig. 3. Enlargement by 2. The bilinear interpolator and correction
filter optimized error inl2 is used

To generalize the two cases above, we find that whenφ(x) =
δ(x), the correction filter can be calculated using (10) withφ(x) =
1. Comparing (4) and (10), the correction filter used in the resam-
pling case depends much on the resampling rateb chosen. Because
of this, the correction filter for resampling can be very different from
the one obtained based on GST, even if the acquisition and synthesis
filters are the same.

In summary, the design of correction filter in the resampling sys-
tem is subject to the requirement that the discrete output should be



consistent with the input, when re-injected into the system. The cor-
rection filter projects the input signal, either continuous or discrete
onto the space ofV (ϕb) such that the different between input and
output measured inl2 is minimized. This criteria is more suitable
for resampling system where both input and output can be discrete.

4. EXAMPLE

The theory developed above is applied to the example of image
zooming. The interpolator used in image processing applications
are generally small kernels like linear or cubic interpolators. Be-
cause they are short in time, their frequency response is bad and will
cause aliasing and distortion which would degrade the quality of the
image. The correction filter defined in Theorem 2 is inserted and the
performance of zooming of factor2 with and without the correction
filter is shown in Figure 2 and Figure 3.

We clearly see the improvement of high frequency response due
to the correction filter, which includes the edges of the hat edge, the
feather decorations and hair. The overall distortion of the image is
also reduced as can be observed from the improvement in the texture
of the hat and the face.

5. CONCLUSION

In this paper, we developed an extension to the generalized sampling
theory so that it can be applied to resampling of discrete-time signals.
The underlying analog signal can be non-bandlimited, therefore our
theory could provide better response to the high frequency signal.
We prove that the performance of the resampling system depends
on the resampling rate instead of the interpolating kernels used. A
correction filter is designed to optimize thel2 error instead of the
commonly usedL2 error. It shows that our filter has better response
when applied to applications like image zooming than other filters
used to optimizeL2 error.
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