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Abstract—Compressed Video Sensing (CVS) is the application
of the theory and principles of Compressed Sensing to video
coding. Previous research has largely ignored the effects of
quantization on the random measurements. In this paper, we
showed that Gaussian quantization of the CVS coefficients
produce higher quality reconstructed videos compared to using
MPEG and uniform quantization. Furthermore, the quantization
matrix is robust against variations in the mean and standard
deviations of the CS measurements among frames. Our work
shows how quantization can be implemented for a practical CVS
codec.

I. I NTRODUCTION

The conventional approach to video coding removes re-
dundancies that exist within individual images of each video
frame and also between successive frames [1]. For instance,
in MPEG and H.264 coding standards, discrete cosine trans-
form (DCT) or wavelet transforms are used to exploit spatial
redundancies within a video frame and motion estimation
and compensation techniques are used to remove temporal
redundancies between frames. These coding procedures are
computationally expensive, resulting in a complex encoder.
On the other hand, the decoding process is relatively simple.
This approach makes sense when encoding is performed once
and the video is played back many times using devices that
may not have much computing power.

However, there are many other applications, such as video
surveillance, where we want to deploy a large number of
sensors (cameras) and the encoded video streams are not
required to be played back often. In these cases, the system
costs will be lower if the sensors, and hence the encoders,
are relatively cheap and simple. The computing burden can
be shifted to the decoding process which is performed by
backend computers. Developments in the theory of Compres-
sive Sampling or Compressed Sensing (CS) [2] has provided
a theoretical foundation for us to take this new approach to
video coding which we shall refer to as Compressed Video
Sensing (CVS) in this paper.

CS builds upon the assumption that almost all signals
contain some kind of structure that enables a compact repre-
sentation. For these signals, a relatively small number of linear
projections of the signals onto a random basis captures mostof
its essential information. The signals can be recovered from
these projected measurements, or CS coefficients, through a
suitable optimization process [3].

Some approaches to CVS has recently been reported [4], [5].
These works have generally assumed that the infinite precision
CS measurements are available at the decoder. In practice,
these measurements have to be quantized. The effects of quan-
tization on the performance of CS based system have recently
been studied theoretically for certain signal models [6], [7].
But the effects of quantization on CS video have yet to be
explored.

In this paper, we focus on investigating the quantiza-
tion effects on CS measurements and recovery for video
signals. We found that both uniform quantization and the
standard quantization matrix in MPEG do not perform well
for compress-sensed videos. On the other hand, our simulation
results show that Gaussian quantization performs better than
uniform and MPEG quantization. Furthermore, performance
is robust against mismatch between the mean and standard
deviation of the quantizer and that of the actual video signals.

The rest of this paper is organized as follows. In Section II
we give a brief overview of compressed sensing. Existing
work on compressed video sensing is reviewed in Section III.
Our proposed quantization scheme for CVS is presented in
Section IV. It is tested using several standard video sequences
and the results are compared to those obtained using uniform
quantization as well as the standard MPEG quantization ma-
trix. Finally, Section V concludes the paper.

II. COMPRESSEDSENSING

Let x = {x[1], . . . x[N ]} be a discrete time real-valued
random process. Ifx is represented in a transform domain
Ψ by s, then

x = Ψs =

N∑

i=1

siψi (1)

wheres = [s1 . . . sN ], si =< x,ψ > andΨ = [ψ1, ψ2 . . . ψN ]
is the basis matrix. The sparsity of signalx is measured by
the number of non-zero elements ins. If there areK non-zero
coefficients (out of theN ), thenx is calledK-sparse.

The conventional approach to compression is to acquire
sampled values of the signal in the time or spatial domain
first. Then a suitable transform (e.g. DCT) is subsequently
applied to obtain the coefficientss. Coefficients that are zero
or insignificant are then discarded to achieve compression.
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In compressed sensing, the idea is to acquire the significant
transform coefficients directly.

Let y be the length-M (M < N ) measurement vector,
obtained by applying a certain measurement matrixΦ to x
such that

y = Φx (2)

It has been proven thatx can be recovered fromM ∼ K
or more measurements [2], [3]. In order to achieve that,
it is necessary forA = ΦΨ to have a restricted isometry
property [3]. In this case, the reconstruction problem can be
expressed as a linear program:

min ‖x‖
l1

subject toAx = y (3)

Algorithms such as basis pursuit [8], [9] and matching pur-
suit [10] and their variants have been proposed to solve it.

Further results from [2], [3], [11] show that an independent
identically distributed (i.i.d.) Gaussian matrixΦ satisfies the
restricted isometry property for any orthonormalΨ with high
probability if M ≥ cK log (N/K) for some small constantc.
The recovery of theN measurements ofx is highly probable
from only M ≈ cK log (N/K) < N random Gaussian
measurementsy under the assumption thatx is K-sparse in
some domain. It is important to note that it is not known in
advance which coefficientssi are zeros, or which samplesx[i]
are not needed.

Recently, a more computationally efficient way to perform
CS using structurally random matrices has been proposed [12].
The process involves pre-randomizing the signal and then
a fast transform (e.g. DCT, DFT) is applied to the ran-
domized signal. Finally, the transform coefficients are sub-
sampled randomly to obtain the compressed measurements.
Structurally random matrices are orthonormal matrices with
columns permuted randomly or the sign of its entries in each
column reversed simultaneously with the same probability.
These matrices has the same advantage as Gaussian matrices
in that they are universally incoherent with signals that are
sparse in any domain except in time.

The reconstruction problem can also be formulated as a
bound-constrained quadratic program. The Gradient Projection
for Sparse Reconstruction (GPSR) [13] solves the quadratic
program:

min
x

1

2
||y −Ax||2

2
+ τ ||x||1 (4)

GPSR is a gradient projection algorithm has proved to be very
efficient in terms of CPU utilization compared to basis pursuit
and orthogonal matching pursuit. It has been used in [4],
[5] to recover Compressed Sensing Video. This is also the
reconstruction algorithm used in our simulations.

III. C OMPRESSEDV IDEO SENSING

Compressed sensing has been applied in many application
areas. However, its application to video coding is still at an
early stage.

The first combination of CS and video is proposed in [14].
Their approach is based on single pixel camera [15]. The
camera architecture employs a digital micromirror array to
perform optical calculations of linear projections of an image
onto pseudorandom binary patterns. It directly acquires ran-
dom projections without first collecting the N pixels/voxels.
They have assumed that image changes slowly across a
group of snapshots which completes one frame. The have
measured video sequence using a total of M measurements,
which are either 2D random measurements or 3D random
measurements. For 2D frame-by-frame reconstruction they
have used 2D wavelets as a sparsity-inducing basis and for
3D joint reconstruction, 3D wavelets as a sparsity-inducing
basis. Matching Pursuit reconstructipon algorithm is usedto
reconstuct compressed measurements.

In [4], CS is combined with distributed video coding which
is a technique based on theorems of Slepian-Wolf and Wyner-
Ziv that allows the source statistics, partially or totally, to be
exploited at the decoder only [16]. The frames are divided into
key frames and non-key frames. Key frames are encoded using
MPEG/H.264 intra-frame coding. For non-key frames, block-
based as well as frame-based CS measurement are acquired.
At the decoder, the block-based measurements of a CS frame
along with the two neighbouring key frames are used for
generating sparsity-constraint block prediction. The block-
based prediction frame is then used as side information (SI)to
recover the input frame from its measurements. Unfortunately,
the use of MPEG/H.264 coding for the key frames does not
reduce the complexity of the encoder while it still requires
substantial decoder complexity to deal with the CS-encoded
non-key frames.

Another way of incorporating CS into distributed video
coding is proposed in [5]. In this case, both key frames and
non-key frames are acquired using CS measurements. At the
decoder, each key frame is reconstructed using the GPSR
algorithm. The side information generated by previously re-
constructed key frames are used for reconstructing the non-key
frames.

Compared with the works described above, the approach
described in [17] involves the least computationally intensive
encoder. Random measurements are taken independently for
each frame. Motion estimation is performed at the decoder.
A multiscale framework for reconstruction is proposed which
iterates between motion estimation and sparsity-based re-
construction of the frames. It is built around the LIMAT
method [18] for standard video compression. This approach
is computationally inefficient as the decoder has to iterate
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through different scales to produce an efficient approximation.
Another implementation of CS video coding is proposed
in [19]. A video frame is split into non-overlapping blocks of
equal size. The sparsity of blocks is determined by preceding
reference frames which were sampled conventionally. The
non-sparse blocks are sampled in a conventional manner
while the sparse blocks are sampled by compressive sampling.
Again, this approach does not fully utilize CS.

In all these works, it has been assumed that the data
available at the decoder are of infinite precision. In practice,
some form of quantization is always required.

IV. QUANTIZATION IN COMPRESSEDV IDEO SENSING

The quantizer is very important part of the encoding pro-
cess. An optimal quantizer should be tailored to the signal
concerned and minimize the amount of distortion in the
reconstructed signal [20]. However, for practical reasons, fixed
quantizers that are sub-optimal are always used.

In video coding standards, different quantization matrices
are used for intra-frame and inter-frame coding. For MPEG,
the dc and the lower frequency Discrete Cosine Transform
(DCT) coefficients are finely quantized while the higher fre-
quency coefficients are coarsely quantized [1]. This designis
based on the fact that the human visual system is less sensitive
to errors in higher frequencies than it is for lower frequencies.
Also, the values of the DCT coefficients tend to be larger at the
lower end of the spectrum. For the H.264 baseline, main and
extended profiles, the quantization matrix gives equal weight
to all coefficients and uses a uniform quantization scheme [21].

A. Quantizer Design for CVS

The CS measurement process is very different from or-
thogonal transforms such as the DCT. The distribution of
CS coefficients is directly related to the measurement matrix
used. Due to the need for satisfying the restricted isometry
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property as described in Section II, the i.i.d. Gaussian matrix
is often used. Thus we would expect the distribution of CS
coefficients to be Gaussian. Figure 1(a) and Figure 1(b) show
the histograms of the DCT and CS coefficients, respectively,
for one frame of video taken from the “news” sequence. As
expected, the DCT coefficient values concentrate on the lower
end of the frequency spectrum. The majority of the DCT
coefficients are zero or close to zero. On the other hand,
the CS measurement values follow a more or less normal
(Gaussian) distribution. Histograms of other frames show a
similar pattern. This indicates that the quantizer for CVS
should be different from those used in the current video coding
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Fig. 4. System Block Diagram

standards.

To design a quantization matrix for video CS measurements,
we computed the mean and standard deviation of first 100
frames of three video sequences: “news”, “bus” and “fore-
man”. Figures 2 and 3 show the variations of the mean and
standard deviation, respectively, from frame to frame. While
these parameters do not vary much for some sequences like
“news” and “foreman”, the variation is more significant for
others. One question that we seek to answer is whether a fixed
quantizer is robust to these variations.

In our experiments, a quantization matrix which follows
the random Gaussian distribution is used. We take the aver-
age value of the means and standard deviations of the first
100 frames of the “news” sequence and generate a random
quantization matrix using (5).

Q = rnd(x) ∗ sqrt(var) +mean (5)

One problem in designing a matrix this way is that due to
Gaussian distribution, few matrix values are close to zero or 1
or too high. To make quantization matrix weights appropriate,
we change these values to 16, which is suitable as our results
shows in next section. For too much higher values, the square
root can be taken to make them appropriate.

B. Simulation Model

In order to isolate the effects of quantization on CVS, we
have chosen to use a model that does not incorporate any
side information for reconstruction. The system model shown
in Figure 4. At the encoder, the CS measurement process is
applied to each individual frame independently. This process is
performed using structurally random matrices [12] with DCT
as the transform. Blocks of8 × 8 CS measurements are then
quantized using the quantizer generated as described above.
It should be emphasized that the same quantization matrix is
used for all video frames of all the sequences being tested. In
other words, the quantizer is not adaptive.

At the decoder, inverse quantization is followed by the CS
recovery process to reconstruct the signal. We used the GPSR
algorithm [13] for CS recovery.
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Fig. 5. Average PSNR(dB) vs. CS measurement rate for various quantization
schemes using the Foreman Sequence.

Note that this framework is computationally expensive, but
our aim is to analyze the effects of quantization only.

C. Experimental Results

Three CIF video sequences, “foreman”, “news” and “bus”,
with a frame size of352× 288 pixels are used for our exper-
iments. Three different quantization schemes are compared.
The first one is the MPEG quantization matrix as defined in
the MPEG standard for intra-frame coding [1]. The second
one is a uniform quantization matrix [21]. The third one is
our CVS quantization matrix as described in Section IV-A.

Figure 5 shows the average PSNR against different CS
measurements rates for the “foreman” video sequence using
the three quantization schemes as well as no quantization.
Our proposed quantization method produces better results than
both the other two quantization schemes for all measurement
rates. Similar results are obtained for the other two video
sequences as shown in Figure 6.

Our results show that even though the proposed Gaussian
quantization matrix is generated based on the statistics of
a part of one particular video sequence, it works well for
other sequences with different statistics. This shows thata
fixed quantization matrix based on the Gaussian distribution
can be used in general. This is confirmed when the same
quantization matrix is applied to a number of other video
test sequences obtained from [22]. These results are shown
in Table I. For example, a 33% gain on MPEG and 9%
over uniform quantization is obtained when the Gaussian
quantization matrix is used.

Figure 7 shows one frame of foreman video sequence. The
visual quality obtained with and without quantization can be
compared with the original. A 75% CS measurement rate is
used. It shows that our proposed quantization scheme produces
better results visually than uniform and MPEG quantization.
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Fig. 6. Average PSNR(dB) vs. CS measurement rate for various quantization schemes.

TABLE I
PERFORMANCECOMPARISON OF50TH FRAME, PSNR(DB)

Sequence No quantization MPEG Uniform Proposed

Foreman 40.77 27.17 33.33 36.41

News 42.48 27.21 33.58 37.22

Bus 33.25 25.87 30.11 31.76

City 35.31 26.73 31.48 33.44

Coastguard 34.68 24.41 31.14 32.94

Crew 41.64 27.35 33.32 36.55

mobile 29.04 24.49 27.44 28.34

paris 36.66 26.16 31.28 33.79

stefan 34.07 25.80 30.26 32.10

Original

Default Recovery, PSNR= 40.77 dB MPEG Quantization, PSNR= 27.17 dB

Uniform Quantization, PSNR= 33.33 dB Proposed Quantization, PSNR= 36.41 dB

Fig. 7. Reconstruction visual quality for 50th frame of foreman sequence

In particular, the visual quality is particularly poor for MPEG
quantization. The proposed quantization matrix produces bet-
ter results than Uniform and MPEG quantization.

V. CONCLUSIONS

We studied the effects of quantization on compressed
sensing video. Our results show that a quantization matrix
for CS coefficients can be designed using random Gaussian
distribution. This type of quantization matrix has been shown
to be robust with respect to the mean and standard deviation
of the individual video frames. Our results open up a way to
design practical CVS codecs with quantization incorporated.
While theoretical analysis of quantization has been reported
for compressed sensing, our work is the first, as far as we
know, to report on experimental results on quantized CS video.
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