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Abstract—Compressed Video Sensing (CVS) is the application =~ Some approaches to CVS has recently been reported [4], [5].
of the theory and principles of Compressed Sensing to video These works have generally assumed that the infinite pogcisi
coding. Previous research has largely ignored the effects of CS measurements are available at the decoder. In practice
quantization on the random measurements. In this paper, we h h b ized. The eff f ’
showed that Gaussian quantization of the CVS coefficients t_ eS.e measurements have to be quantized. The effects of quan
produce higher quality reconstructed videos compared to using tization on the performance of CS based system have recently
MPEG and uniform quantization. Furthermore, the quantization =~ been studied theoretically for certain signal models [&], [

matrix is robust against variations in the mean and standard But the effects of quantization on CS video have yet to be
deviations of the CS measurements among frames. Our work explored

shows how quantization can be implemented for a practical CVS

codec. In this paper, we focus on investigating the quantiza-

tion effects on CS measurements and recovery for video

signals. We found that both uniform quantization and the

) ) ) standard quantization matrix in MPEG do not perform well
The conventional approach to video coding removes gy oompress-sensed videos. On the other hand, our simiilati

dundancies that exist within |nd|V|_duaI images of each 9idGesylts show that Gaussian guantization performs better th

frame and also between successive frames [1]. For instanggitorm and MPEG quantization. Furthermore, performance

in MPEG and H.264 coding standards, discrete cosine trafS- st against mismatch between the mean and standard

form (DCT) or wavelet transforms are used to exploit spatighyjation of the quantizer and that of the actual video signa
redundancies within a video frame and motion estimation

and compensation techniques are used to remove temporathe rest of this paper is organized as follows. In Section II
redundancies between frames. These coding procedures\@egive a brief overview of compressed sensing. Existing
computationally expensive, resulting in a complex encodgjork on compressed video sensing is reviewed in Section IIl.
On the other hand, the decoding process is relatively simptsur proposed quantization scheme for CVS is presented in
This approach makes sense when encoding is performed oggtion IV. It is tested using several standard video sezpsen
and the video is played back many times using devices thad the results are compared to those obtained using uniform
may not have much computing power. quantization as well as the standard MPEG quantization ma-

L . trix. Finally, Section V concludes the paper.
However, there are many other applications, such as video Y pap

surveillance, where we want to deploy a large number of

sensors (cameras) and the encoded video streams are not Il. COMPRESSEDSENSING

required to be played back often. In these cases, the system

costs will be lower if the sensors, and hence the encoderslet © = {z[1],...z[N]} be a discrete time real-valued

are relatively cheap and simple. The computing burden ceandom process. If: is represented in a transform domain

be shifted to the decoding process which is performed Wy by s, then

backend computers. Developments in the theory of Compres- N

sive Sampling or Compressed Sensing (CS) [2] has provided z=VUs= Z sivi @)

a theoretical foundation for us to take this new approach to =1

video coding which we shall refer to as Compressed Videgheres = [s1...sy), s, =< x,9 > and¥ = [¢1,¢s ... x]

Sensing (CVS) in this paper. is the basis matrix. The sparsity of signalis measured by
the number of non-zero elementsdnlf there areK non-zero

CS builds upon the assumption that almost all signatgefficients (out of theV), thenz is called K -sparse.
contain some kind of structure that enables a compact repre-

sentation. For these signals, a relatively small numbeinef The conventional approach to compression is to acquire
projections of the signals onto a random basis capturesafiossampled values of the signal in the time or spatial domain
its essential information. The signals can be recoverenh frdirst. Then a suitable transform (e.g. DCT) is subsequently
these projected measurements, or CS coefficients, throughpalied to obtain the coefficients Coefficients that are zero

suitable optimization process [3]. or insignificant are then discarded to achieve compression.

I. INTRODUCTION
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In compressed sensing, the idea is to acquire the significant [1l. COMPRESSEDVIDEO SENSING
transform coefficients directly.

Compressed sensing has been applied in many application
areas. However, its application to video coding is still at a
early stage.

Let y be the length/ (M < N) measurement vector,
obtained by applying a certain measurement mafrixo x
such that

y = bz 2) The first combination of CS and video is proposed in [14].
Their approach is based on single pixel camera [15]. The
camera architecture employs a digital micromirror array to
Jferform optical calculations of linear projections of arage
onto pseudorandom binary patterns. It directly acquires ra
gom projections without first collecting the N pixels/voxel
They have assumed that image changes slowly across a
group of snapshots which completes one frame. The have
measured video sequence using a total of M measurements,
which are either 2D random measurements or 3D random
) i ) ) measurements. For 2D frame-by-frame reconstruction they
Algorithms such as basis pursuit [8], [9] and matching pufaye sed 2D wavelets as a sparsity-inducing basis and for
suit [10] and their variants have been proposed to solve it.3p joint reconstruction, 3D wavelets as a sparsity-indgcin
Further results from [2], [3], [11] show that an independer?ﬁféi’smg,:cch(;rrfprzl;;seuét r;eec;srsjsrté;c:ﬁg algorithm is uted
identically distributed (i.i.d.) Gaussian matrik satisfies the
restricted isometry property for any orthonormialwith high In [4], CS is combined with distributed video coding which
probability if M > cK'log (V/K) for some small constant s 5 technique based on theorems of Slepian-Wolf and Wyner-
The recovery of theV measurements of is highly probable 7z, that allows the source statistics, partially or totatly be
from only M =~ cKlog(N/K) < N random Gaussian gynoited at the decoder only [16]. The frames are dividéd in
measurementg under the assumption thatis K-sparse in ey frames and non-key frames. Key frames are encoded using
some domain. It is important to note that it is not known i pEG/H.264 intra-frame coding. For non-key frames, block-
advance which coefficients are zeros, or which sample$i] hased as well as frame-based CS measurement are acquired.
are not needed. At the decoder, the block-based measurements of a CS frame

) . along with the two neighbouring key frames are used for
Recently, a more computationally efficient way to perforfgenerating sparsity-constraint block prediction. Theckilo

CS using structurally random matrices has been proposgd [§seq prediction frame is then used as side informationt¢Sl)
The process involves pre-randomizing the signal and thggoyer the input frame from its measurements. Unfortupate
a fast transform (e.g. DCT, DFT) is applied to the ranne yse of MPEG/H.264 coding for the key frames does not
domized signal. Finally, the transform coefficients are-subsqyce the complexity of the encoder while it still requires

sampled randomly to obtain the compressed measuremegg,siantial decoder complexity to deal with the CS-encoded
Structurally random matrices are orthonormal matricesh Wlhon_key frames.

columns permuted randomly or the sign of its entries in each

column reversed simultaneously with the same probability. Another way of incorporating CS into distributed video
These matrices has the same advantage as Gaussian matgs@ng is proposed in [5]. In this case, both key frames and
in that they are universally incoherent with signals tha apon-key frames are acquired using CS measurements. At the
sparse in any domain except in time. decoder, each key frame is reconstructed using the GPSR
algorithm. The side information generated by previously re

The reconstruction problem can also be formulated ascgnstructed key frames are used for reconstructing thekagn-
bound-constrained quadratic program. The Gradient Rfofec frgmes.

for Sparse Reconstruction (GPSR) [13] solves the quadratic
program: Compared with the works described above, the approach
1 ) described in [17] involves the least computationally isiea
m;n§”y — Az||3 + 7llz|l (4)  encoder. Random measurements are taken independently for
each frame. Motion estimation is performed at the decoder.
GPSR is a gradient projection algorithm has proved to be vetymultiscale framework for reconstruction is proposed \iahic
efficient in terms of CPU utilization compared to basis pitrsuterates between motion estimation and sparsity-based re-
and orthogonal matching pursuit. It has been used in [4Jonstruction of the frames. It is built around the LIMAT
[5] to recover Compressed Sensing Video. This is also tiheethod [18] for standard video compression. This approach
reconstruction algorithm used in our simulations. is computationally inefficient as the decoder has to iterate

It has been proven that can be recovered from/ ~ K
or more measurements [2], [3]. In order to achieve th
it is necessary forA = ®V¥ to have a restricted isometry
property [3]. In this case, the reconstruction problem can
expressed as a linear program:

min |z][,, subject toAz =y (3)
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through different scales to produce an efficient approxionat oS Measurement wean
Another implementation of CS video coding is propose
in [19]. A video frame is split into non-overlapping blocké o
equal size. The sparsity of blocks is determined by precedi
reference frames which were sampled conventionally. TI
non-sparse blocks are sampled in a conventional mani
while the sparse blocks are sampled by compressive sampli
Again, this approach does not fully utilize CS.

—news
——FOREMAN

Mean per Frame

In all these works, it has been assumed that the d:
available at the decoder are of infinite precision. In pcagti

No of Frames

some form of quantization is always required. Fig. 2. Mean Graph

IV. QUANTIZATION IN COMPRESSEDVIDEO SENSING CS Measurement Standard Deviation

The quantizer is very important part of the encoding prc ’\*
cess. An optimal quantizer should be tailored to the sign " M
concerned and minimize the amount of distortion in th —s

reconstructed signal [20]. However, for practical reasired
guantizers that are sub-optimal are always used.

Standard Deviation per Frame
[
L %I
ER

In video coding standards, different quantization masrice
are used for intra-frame and inter-frame coding. For MPE(
the dc and the lower frequency Discrete Cosine Transfol...
(DCT) coefficients are finely quantized while the higher fre-
qguency coefficients are coarsely quantized [1]. This deisgn
based on the fact that the human visual system is less sensiti
to errors in higher frequencies than it is for lower frequesc . . . . N
Also. the valugs of tthCT coefficients tend to be Ia%erat tIﬁ)roperty as described in Section Il, the i.i.d. Gaussiarrimat

) .~ "is often used. Thus we would expect the distribution of CS
lower end of the spectrum. For the H.264 baseline, main .a(rzlgefficients to be Gaussian. Figure 1(a) and Figure 1(b) show

extended profiles, the quantization matrix gives equal melgthe histograms of the DCT and CS coefficients, respectively.
to all coefficients and uses a uniform quantization scherbp [2for one frame of video taken from the “news” éequence As'

expected, the DCT coefficient values concentrate on therlowe

A. Quantizer Design for CVS end of the frequency spectrum. The majority of the DCT

coefficients are zero or close to zero. On the other hand,

The CS measurement process is very different from dhe CS measurement values follow a more or less normal

thogonal transforms such as the DCT. The distribution @¢Gaussian) distribution. Histograms of other frames show a

CS coefficients is directly related to the measurement matsimilar pattern. This indicates that the quantizer for CVS
used. Due to the need for satisfying the restricted isomeskould be different from those used in the current videorapdi

15 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 o7

No of Frames

Fig. 3. Standard Deviation Graph
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To design a quantization matrix for video CS measurements,
we computed the mean and standard deviation of first 160- 5. Average PSNR(dB) vs. CS measurement rate for varioastization
frames of three video sequences: “news”, “bus” and “forgSeMes using the Foreman Sequence.
man”. Figures 2 and 3 show the variations of the mean and
standard deviation, respectively, from frame to frame. Whl|' Note that this framework is computationally expensive, but
these parameters do not vary much for some sequences like 5im is to analyze the effects of quantization only.
“news” and “foreman”, the variation is more significant for
others. One question that we seek to answer is whether a fixed ,
quantizer is robust to these variations. C. Experimental Results

In our experiments, a quantization matrix which follows Three CIF video sequences, “foreman”, “news” and “bus”,
the random Gaussian distribution is used. We take the avétth a frame size oB52 x 288 pixels are used for our exper-
age value of the means and standard deviations of the fifgents. Three different quantization schemes are compared
100 frames of the “news” sequence and generate a rand®he first one is the MPEG quantization matrix as defined in

quantization matrix using (5). the MPEG standard for intra-frame coding [1]. The second
one is a uniform quantization matrix [21]. The third one is
Q = rnd(x) x sqrt(var) + mean (5) our CVS quantization matrix as described in Section IV-A.

One problem in designing a matrix this way is that due to Figure 5 shows the average PSNR against different CS

Gaussian diStribUtion, few matrix values are close to zerb o measurements rates for the “foreman’” video seguence using

or too high. To make quantization matrix weights appropriatthe three quantization schemes as well as no quantization.

we Change these values to 16, which is suitable as our resqjﬁ proposed quantiza’[ion method produces better resualts t

shows in next section. For too much higher values, the squ@j&h the other two quantization schemes for all measurement

root can be taken to make them appropriate. rates. Similar results are obtained for the other two video
sequences as shown in Figure 6.

B. Smulation Model Our results show that even though the proposed Gaussian
guantization matrix is generated based on the statistics of
In order to isolate the effects of quantization on CVS, wa part of one particular video sequence, it works well for
have chosen to use a model that does not incorporate atyer sequences with different statistics. This shows that
side information for reconstruction. The system model showixed quantization matrix based on the Gaussian distributio
in Figure 4. At the encoder, the CS measurement processéh be used in general. This is confirmed when the same
applied to each individual frame independently. This pssds quantization matrix is applied to a number of other video
performed using structurally random matrices [12] with DCTest sequences obtained from [22]. These results are shown
as the transform. Blocks &f x 8 CS measurements are thenn Table I. For example, a 33% gain on MPEG and 9%
quantized using the quantizer generated as described .abover uniform quantization is obtained when the Gaussian
It should be emphasized that the same quantization matrixgigantization matrix is used.
used for all video frames of all the sequences being tested. |
other words, the quantizer is not adaptive. Figure 7 shows one frame of foreman video sequence. The
visual quality obtained with and without quantization can b
At the decoder, inverse quantization is followed by the C&mpared with the original. A 75% CS measurement rate is
recovery process to reconstruct the signal. We used the GR&Rd. It shows that our proposed quantization scheme pesduc
algorithm [13] for CS recovery. better results visually than uniform and MPEG quantization
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Fig. 6. Average PSNR(dB) vs. CS measurement rate for varioastigation schemes.

TABLE |

PERFORMANCE COMPARISON OF50TH FRAME, PSNRB) V. CONCLUSIONS
Sequence || No guantization]] MPEG || Uniform || Proposed We studied the effects of quantization on compressed
Foreman 40.77 2717 3333 3641 sensing video. Our results show that a quantization matrix
News 42.48 2721 3358 3722 for CS coefficients can be designed using random Gaussian
Bus 3325 2587 3011 31.76 distribution. This type of quantization matrix has beenveho
City 3531 26.73 31.48 33.44 to be robust with respect to the mean and standard deviation
Coastguard 34.68 2441 31.14 32.94 of the individual video frames. Our results open up a way to
Crew 41.64 27.35 33.30 36.55 design practical CVS codecs with quantization incorpatate
mobile 29.04 24.49 27.44 28.34 While theoretical analysis of quantization has been redorte
paris 36.66 26.16 31.28 33.79 for compressed sensing, our work is the first, as far as we
stefan 34.07 2580 3026 3210 know, to report on experimental results on quantized CSovide
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