
 

Abstract — Discrete wavelet transform has been 
incorporated as part of the JPEG2000 image compression 
standard and is used in many consumer imaging products. 
This paper presents a 2-dimensional biorthogonal DWT 
processor design based on the residue number system. The 
symmetric extension scheme is employed to reduce distortion 
at image boundaries. Hardware complexity reduction and 
utilization improvement are achieved by hardware sharing. 
Our implementation results show that the design is able to fit 
into a 1,000,000-gate FPGA device and is able to complete a 
first level 2-D DWT decomposition of a 32×32-pixel image in 
205 sµ

1. 
 

Index Terms — Discrete Wavelet Transform, Residue 
Number System, Field Programmable Gate Array. 
 

I. INTRODUCTION 
avelets are mathematical functions that enable one to 
analyze a signal with resolutions matched to its scale.  

Compared with the traditional Fourier analysis methods, 
wavelet transforms have the advantage that signals which are 
transient, or with discontinuities and sharp spikes can be 
properly analyzed.  The developments on wavelets and 
wavelet transforms in recent years have led to numerous 
applications in areas such as computer vision, image 
compression, denoising noisy data, and sound synthesis.  
Recently the image compression standard JPEG2000 has 
incorporated discrete wavelet transform (DWT) into its core 
specifications [1].   As a result of standardization, DWT is 
now being used in various consumer imaging products. 
 
 As DWT requires intensive computation, for some 
real-time applications it is necessary to implement the wavelet 
transform algorithms in hardware so that timing constraints 
are met.  DWT can be realized in hardware using FIR filters [4] 
which basically only involves additions and multiplications.  
How these arithmetic operations are implemented in hardware 
depends on the number system used to represent the data. 
 

Residue number systems (RNS) are suitable for 
implementations of high-speed digital signal processing 
devices because of their inherited parallelism, modularity, 
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fault tolerance and localized carry propagation [10].  
Arithmetic operations, such as addition and multiplication, can 
be carried out more efficiently in RNS than in conventional 
two’s complement systems. Hence that makes RNS a good 
candidate for implementing DWT. Some RNS-based DWT 
implementations have been reported in the literature [5][6][7]. 
However, these implementations concentrate only on 1-D 
DWT analysis or synthesis using orthogonal filter banks. A 
complete design of RNS-based 2-D DWT has, to the best of 
our knowledge, not been previously reported. 

 
In this paper, we present our design and implementation of 

an RNS-based biorthogonal 2-D DWT processor. The 
requirements for filter coefficient word length are studied. The 
RNS-based FIR filter bank data path, controllers and memory 
interface are designed and simulated using a Field 
Programmable Gate Array (FPGA) development board.  

 
The rest of the paper is organized as follows. First, a brief 

review of wavelet transforms and residue number systems is 
provided in Section II. Then, some design considerations are 
discussed in Section III. In Section IV, the design of the RNS-
based filter bank data path, various controllers and memory 
interface are described. The performance results are then 
presented in Section V. Lastly, conclusions are given in 
Section VI. 

II. PRELIMINARIES 
This section provides brief technical backgrounds on 

residue number systems, discrete wavelet transform and 
symmetric extension that are necessary to understand the rest 
of the paper. 

A. Residue Number Systems 
A residue number system is defined by a moduli set, which 

consists of n pairwise relatively prime integers 
{ }0 1 1, , , nm m m −K .  The useful computational range M of such 
a number system is the product of all moduli in the moduli set:  
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Such a residue number system is able to uniquely represent 

unsigned numbers in the range  [ ]0, 1M −  and signed numbers 

in the range  1 1, 1
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 for even values of M.  These are called the 

dynamic ranges of the system. 
 
A number X within the dynamic range can be represented 

by the list of its residues ix  with respect to the moduli im  
defined in the moduli set.  The RNS representation of X is 
denoted 

   { }0 1 1, , , nX x x x −= K           (2) 
where for 0,1, 1i n= −K , 
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In RNS, addition, subtraction and multiplication can be 

performed entirely on the residue representation of the 
operands.  Let the RNS representations of X and Y  be given 
by { }0 1 1, , , nx x x −K  and { }0 1 1, , , ny y y −K  respectively.  Then 

0 1 1
0 0 1 1 1 1{ , ,...., }

n
n nM m m m

X Y x y x y x y
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− −=o o o o           (4)  

where the operation o  can be either addition, subtraction or 
multiplication. 

 
Conversion from the 2’s complement representation to RNS 

representation is referred to as the forward conversion.  The 
residue of a number X with respect to modulus mi is given by 
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where ib  is either 0 or 1. 
 
For reverse (RNS to binary) conversions, the Chinese 

Remainder Theorem (CRT) can be applied. The CRT states 
that binary/decimal representation of a number can be 
obtained from its RNS representation through (6), provided all 
elements of the moduli set are pairwise relatively prime. 
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where  ˆ
i iM M m=  and 1ˆ

i
i i m

Mα −= . iα is called the 

multiplicative inverse of ˆ
iM  with respect to im . 

B. Discrete Wavelet Transform 
In DWT, an arbitrary square integrable function is 

represented as a superposition of a family of Wavelet basis 
functions that are generated by the translation and dilation of 
the mother wavelet of the family. As in the pyramid algorithm 
proposed by Mallat [11], the DWT coefficients at an arbitrary 
level j can be computed from the DWT coefficients of its 
previous level j+1, which is expressed as follows: 

 
 ( ) ( ) ( )0 12j j

m

c k h m k c m+= −∑  (7) 

 
 ( ) ( ) ( )1 12j j

m
d k h m k c m+= −∑  (8) 

where 
jc  and 

jd  are the scaling coefficient and the wavelet  

coefficient of level j respectively, whereas ( )0h n  and ( )1h n  
are the dilation coefficients corresponding to the scaling and 
wavelet functions respectively.  

 
The dilation coefficients ( )0h n and ( )1h n  are also the 

coefficients of a low pass and a high pass filter respectively. 
As a result, the scaling and wavelet coefficients at level j are 
obtained by filtering the scaling coefficients at level j+1 using 
an analysis quadrature mirror filter bank (QMF). 

 
Scaling coefficients at level j+1 is obtained by combining 

the scaling and wavelet coefficients at level j: 
 

( ) ( ) ( ) ( ) ( )1 0 12 2j j j
m m

c k c m h k m d m h k m+ ′ ′= − + −∑ ∑      (9) 

 
Each level of the 2-D DWT operation requires two stages of 

1-D DWT operations as shown in Fig. 1. First, 1-D DWT is 
performed on the row data, producing high pass (H) and low 
pass (L) outputs.  A second stage 1-D DWT is executed on the 
columns of the H and L outputs of the first stage to obtain four 
sub-images (HH, HL, LH, LL).  Further decomposition can be 
made on the LL sub-image in a similar way.  In this way, an 
image is decomposed into a set of sub-images with various 
resolutions corresponding to the different scales. 

 

C. Symmetric Extension 
Since filter outputs at the boundary are not well defined, 

digital filtering of finite length data sequences introduces 
boundary distortions. Therefore, data sequences have to be 
extended beyond the boundary to eliminate boundary 
distortion. However, zero padding and periodic extension, 
which are traditionally used to extend data sequences, 
introduce undesired effects like expansiveness and artificial 
discontinuity. Thus, symmetric extension is proposed to solve 
these problems. When symmetric extension is applied to a 1-
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Fig. 1. Filter Bank Structure of 2-D DWT 



 

TABLE 1  
FILTER COEFFICIENTS OF THE DAUBECHIES 9/7 FILTER BANK 

Low Pass Filter High Pass Filter 

( )0h  0.852699 ( )0g  0.788486 
( )1±h  0.377402 ( )1±g  0.418092 
( )2±h  -0.110624 ( )2±g  -0.040689 
( )3±h  -0.023849 ( )3±g  -0.064539 
( )4±h  0.37828   
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Fig. 2. FPGA Development Board Block Diagram [16]

dimensional data sequence of length 0N , both ends of the 
sequence are symmetrically extended by reflecting the first or 
last few samples of the sequence. Depending on the type of 
filter used, one of the four types of symmetric extension is 
applied to the input data sequence. In our design, because the 
filters used are of odd-length symmetric, (1,1)-symmetric 
extension is applied [2].   

 
After filtering, only a portion of output sequence, of length 

N0, will be kept to avoid expansiveness. For (1,1)-symmetric 
extension, data samples between IL and IR are kept. IL and IR 
are determined by the equations below. 
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where eL  is the length of symmetric extension, fL is the 
length of the filter, and /r cS  is the size of row or column of 
the image matrix before the filtering is taken place 

III. DESIGN CONSIDERATIONS 

A. Wavelet Filter Coefficients 
In wavelet based image processing, the choice of wavelet 

filters affects both the reconstructed image quality and system 
design. Among all available wavelet filters, the Daubechies 
9/7-tap filter has been reported to give good overall 
performance on regularity, impulse response, step response as 
well as the PSNR values of the reconstructed images [13].  
Also, it is one of the supported filter banks of the JPEG2000 
standard.  Thus, the Daubechies 9/7-tap filter is chosen to 
implement the filtering unit of the DWT processor. The filter 
coefficients are listed in Table 1. 

B. Dynamic Range Determination and Moduli Set Selection 
The wordlength required for RNS filtering computations is 

determined by experimentation. With the assumption that 

input image data are represented in 8 bits, experimental results 
show that the use of 24-bit dynamic range is able to obtain 
reconstructed images with PSNR values higher than 54dB. 
Therefore, we consider that a dynamic range of 24 bits as 
adequate. 

 
Many moduli sets with 24-bit dynamic range are available. 

Our estimation on system delay shows that a system 
implemented using moduli set {255, 256, 257} will likely 
results in shortest delay [15]. This moduli set is of the form 
{2n-1, 2n, 2n+1}, which has the advantage of low cost forward 
conversion and modulo reduction. The reverse conversion 
architecture is also relatively simple. Thus the use of this 
moduli set can significantly reduce hardware complexity and 
delay [12].  

 

C. Development Environment 
An FPGA development board is used to implement the 

design. A block diagram of the board is shown in Fig. 2.  The 
development board has a 1,000,000-gate FPGA chip, 32-MB 
of DDR SDRAM and other supporting modules like 
input/output ports, clock generator and LEDs. The 2-D DWT 
processor design is mapped onto the FPGA chip and utilizes 
the DDR SDRAM as its external storage. 

 

IV. THE 2-D DWT PROCESSOR 
The 2-D DWT processor consists of the following key 

components: RNS-based FIR filter bank data path, buffering 
and DDR interfacing unit, SDRAM controller, main 
controller, clock management circuitry and the host interface. 
A block diagram of its structure is shown in Fig. 3.  
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Fig. 3. Organization of the 2-D DWT Processor 
 

A. The RNS-based FIR Filter Bank Unit 
This unit consists of two sets of RNS-based FIR filters.  

Each of them is made up of three forward converters and three 
sub-filter banks corresponding to the three moduli in our 
chosen moduli set, as well as a reverse converter.  

 
1) Forward and Reverse Converters 

Forward and reverse conversions are necessary for any 
RNS-based system to convert its inputs from 2’s complement 
format to RNS representation and its outputs from RNS back 
to 2’s complement respectively. Data conversions result in an 
increase of hardware cost and delay of the system. Hence, they 
are considered as overheads to an RNS system and need to be 
minimized. Relatively simple converters are available for the 
moduli set { }255, 256,257 . 

 
Forward converter architecture, which can handle signed 

numbers, for the modulo-255 and modulo-257 channels is a 
modified version of the ones discussed in [14] and [3] 
respectively. For the modulo-255 channel, input bits except 
the signed bit are first divided into 8-bit segments. A 2-entry 
look-up table is used to handle the sign bit of the input. If the 
sign bit is zero, which means that input is positive, the output 
of the look-up table (LUT) will be zero. Otherwise, the output 
will be the residue of the most negative value of the input with 
respect to 255. The LUT output and other segments are added 
together using adders with carry-end-around to yield the 
residue of X with respect to modulus 255. Forward conversion 
for the modulo-257 channel is handled in a similar way. 

 
Note that forward conversion for the modulo-256 channel is 

achieved simply by keeping the least significant 8 bits of the 
2’s complement data. 

 
The reverse converter structure that is based on a new 

formulation of the Chinese Remainder Theorem and uses only 
adders was proposed in [12]. However, it is limited to 
converting numbers in RNS back to unsigned numbers. In 
order to cope with signed numbers, we added a comparison 
and subtraction circuit to the original design. 

 
2) RNS-based FIR Sub-filters 

The FIR sub-filters in this design are realized in transposed 
form. It involves modulo multipliers and adders. Since the 
filter coefficients are known a priori in our design, it is 
possible to implement the modular multiplier as look-up tables 
(LUT), which can reduce both the delay and hardware cost.  

 
In our design, 27 look-up tables (LUT), each with 8-bit 

width and 256 entries, are required to store all the results of 
modulo multiplications. The modulo-257 operation generally 
produces a 9-bit result. However, very few results have a non-
zero 9th bit (having the output value of 256). Hence storage for 
the 9th bit is saved by substituting in some combination logic 
to generate the 9th bit of the output for the modulo-257 
channel. 
 
 

3) Pipelining of the RNS-based Filter Banks and LUT 
Sharing 
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Fig. 5. Two RNS-based FIR Sub-filter Banks with LUT 

Sharing 

The delay of each RNS sub-filter is less than that of a 
conventional 2’s complement filter. However, data 
conversions introduce significant added delay to the RNS 
filter. A four-stage pipeline, depicted in Fig.4, is therefore 
introduced to improve the throughput. The first stage consists 
of the forward converters, the second stage the LUT-based 
multipliers, the third stage the modular adders and the last 
stage the reverse converter. 

 
The delay for each stage along the pipeline is different. For 

example, the delay for accessing a look-up table is much 
shorter than that for reverse conversion. Since the clocking 
frequency of the pipeline is limited by the slowest stage, 
hardware complexity can be reduced by sharing the same set 
of look-up tables between the two filter banks, as illustrated in 
Fig. 5. In each cycle, the look-up tables are first accessed by 
inputs to filter bank 0 and the outputs of look-up tables are 
kept in a set of registers. Then, the look-up tables are accessed 
by inputs to filter bank 1. In this way, significant amount of 
hardware is reduced without incurring any extra delay. 

 
4) Reverse Converter Sharing Between HPF and LPF 

The output of each filter is down-sampled by two to reduce 
the data rate after filtering. This down-sampling operation is 
performed before the reverse conversion as shown in Fig. 5. 
At the cycle where the output needs to be kept, RNS outputs 
from the low pass filter are fed into the reverse converter, 
while those from the high pass filter are stored in registers. At 
the cycle where the output needs to be discarded, reverse 
conversion is performed on the output from the high pass sub-
filter of the previous cycle, which is stored in a register. 
Hence, the reverse converters are utilized fully and only one 
reverse converter is required for each filter bank. 

 
 

B. The Main Controller 
Fig. 7 shows the operation flow of the main controller. The 

main controller enters initialization mode after reset. During 
initialization, the main controller sends out reset signals to all 
other units, initializes its internal counters and waits for the 
external SDRAM to be ready. After the processor is 
initialized, the main controller requests image data from the 
host and stores them into the predefined area of the external 
SDRAM. When all image data are stored, the main controller 
instructs the filter banks to perform 2-D DWT on all the image 
data. Because the capacity of the internal RAM is not large 
enough to store a complete image in most cases, only part of 
an image will be read into the internal RAM for processing. 
After it is processed and stored back to the external SDRAM, 
other part of the same image will then be read into the internal 
RAM for processing. This process repeats until all parts of an 
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Fig. 4. Pipelining of the RNS-based FIR Filter Bank  



 

TABLE 2 
 PSEUDO-CODE FOR ADDRESS GENERATION SCHEMES 

Row Column 
If row_count < img_size then 
   for loop_count =0; loop_count < 
N;loop_count ++  
     for col_count=0;col_count < 
img_size; col_count+burst_length 
        ADDR(0 to col_width –1) <= 
        col_count; 

ADDR(col_width to  
row_width-1)<=row_count; 

ADDR(the rest)<= predefined  
area; 

     end for; 
     row_count+1; 
   end for 
end if; 

If col_count < img_size then 
   for loop_count =0; loop_count < 
N;loop_count ++  
      for row_count=0;rowl_count < 
img_size;row_count++ 
         ADDR(0 to col_width –1) <= 
         col_count; 
         ADDR(col_width to  
         row_width-1)<=row_count; 
        ADDR(the rest)<= predefined  
         area; 
     end for 
    col_count+burst_length 
   end for; 
end if; 
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Fig. 7. Main Controller Operation Flow 

Img 0 Img 1 Img 2
Img 0 L Img 0 H Img 1 L Img 1 H

Cycle 0 Cycle 1 Cycle 2

...

...

 Fig. 9. Data Scheduling 

Predefined Area Row Column

Column Addr
width

Row Addr
width

The Rest

Fig. 8. Address to External SDRAM 

image are processed and the processor will continues to 
process next image. If further decomposition is required, the 
low pass sub-images will be fed into the filter banks again. 
When all required processes are finished, the processed data 
are sent back to the host. 

 
1) Address Generation 

The first stage of a 2-D DWT is performed on the row data 
of the image, while the second stage is performed on the 
column data. Thus, output of first stage needs to be transposed 
before being fed into the second stage. This transposition is 
accomplished by using different address generation schemes 
for row and column processing.  

 
In our design, the external RAM stores image data row by 

row. For example, consider a 4-by-4 image, memory locations 
0 to 3 store pixels in first row, memory locations 4 to 7 store 
pixels in second row and so on. For this reason, the address for 
accessing external RAM is divided into three portions as 
illustrated in Fig. 8. Column and Row portions control which 
column and row of the image are being accessed respectively. 
The Predefined Area portion specifies a block of memory 
locations for a specific image. 

 
Pseudo codes of the address generation schemes for row 

and column processing are listed in Table. 2. At each time, N 
rows and N columns of data are read into the row and column 
input buffers respectively since the external DDR RAM works 
in burst mode, which means that a number of data words 
stored in consecutive locations can be read or written 
efficiently. The number of data words read in is determined by 
a parameter called burst length, which is set during the 
initialization. Thus, the column counter is increased by the 
burst length each time. 

 
2) Data Scheduling During DWT Processing 

If the number of data processed by stage 1 of a 2-D DWT 
filter banks is N2, then the number of data processed by each 
of the stage 2 filter banks will be only N2/2. Therefore, only 
one filter bank is needed in the second stage that processes 
both the high pass and low pass outputs from the first stage 
without delaying the whole process.  

 
Fig.9 illustrates how data are scheduled into both the filter 

bank0 and filter bank1. Basically, filter bank0 is configured 
for row processing while filter bank1 is configured for column 
processing. In cycle 0, filter bank0 performs row processing 
on image 0 and results in two sub-images (Img 0 L and Img 0 
H). In cycle 1, filter bank 0 continues to row process image 1. 
At the same time, filter bank 1 performs column processing on 
the two sub-images generated in Cycle 0 by filter bank 0. 
Generally, in Cycle X, filter bank 0 performs row processing 
on Image X and filter bank 1 performs column processing on 
sub-images of Image X-1. In this manner, we can fully utilize 
the two filter banks and obtain the decomposed sub-images at 
each DWT processing cycle (except the starting and the 
ending cycles).  
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Fig. 10. Structure of the Buffering and DDR Interfacing Unit 

 

C. The DDR SDRAM Controller 
The DDR SDRAM Controller provides control signals to 

the external DDR SDRAM. It initializes the memory devices, 
manages SDRAM banks, and refreshes the memory device at 
appropriate intervals. The controller translates read/write 
requests and addresses from the main controller into all the 
necessary SDRAM command signals.  

 
Special care is needed to handle refresh requests.  A refresh 

request is sent when the refresh counter hits a certain preset 
value. That may result in conflict if the main controller sends 
out the read/write command to the RAM in the same interval. 
The following simple mechanism is used to resolve the 
conflict. If the read/write request comes before or at the same 
time as the refresh request, higher priority will be given to the 
read/write request. That means the SDRAM controller allows 
the read/write to take place first. After read/write has 
completed, it will acknowledge the refresh request and send 
out the refresh command. If the refresh request comes first, the 
main controller will be notified so that it won’t send out any 
read/write request until refreshing is complete. Since 
refreshing is delayed by at most one read/write cycle, the 
preset value of the refresh counter is set to a value that is 
slightly smaller than the required value to keep the data in the 
external RAM safe. 

 

D.  Buffering and DDR Interfacing Unit 
The buffering and DDR interfacing unit implements two 

functions. Firstly, it provides a dual clock rate (DDR) data 

interface between the DWT processor and the external DDR 
SDRAM. Secondly, it buffers the data read from the external 
SDRAM and the processed output data from the filter bank 
unit. 

 
The structure of the buffering and DDR interfacing unit is 

shown in Fig. 10. It consists of the DDR interface, row and 
column input buffers, row and column output buffers. Data 
transfers to and from the external RAM are double buffered by 
using two separate 180 degrees out of phase clock signals 
(CLK 0 and CLK 180).  

 
The buffering module has to work with the DDR interface 

as well as the filter bank unit. Therefore, there are two factors 
we need to consider when designing the buffering module. 
The first factor is that in order to work with the external DDR 
SDRAM, inputs/outputs between the DDR interface and 
input/output buffers are separated into two, with one of them 
responding to the original clock (CLK0), and the other one 
responding to the inverted clock (CLK180). The second factor 
is that the RNS-based filter banks are designed to work 
independently, so they may read in or output data at the same 
time. 

 
The buffering module is organized as two input buffers 

(ROW_IN_BUF, COL_IN_BUF) and two output buffers 
(ROW_OUT_BUF, COL_OUT_BUF). ROW_IN_BUF and 
ROW_OUT_BUF temporally store input data and output data 
of the row filter bank, respectively. In the same manner, 
COL_IN_BUF and COL_OUT_BUF are to work with the 
column filter bank. 

 



 

RAM0  RAM1 
Addr Data  Addr Data 

0 00  0 01 
1 02  1 03 
2 04  2 05 
3 06  3 07 
4 10  4 11 
… …  … … 
(a) Data in ROW_IN_BUF 

RAM 0 1 0 1 0 1 0 1 
Addr 2 1 1 0 0 0 1 1 
Data 04 03 02 01 00 01 02 03 
Mode Initial Extension Normal 
RAM 0 1 0 1 0 1 0 1 
Addr 2 2 3 3 3 2 2 1 
Data 04 05 06 07 06 05 04 03 
Mode Normal Final Extension 
(b) Address and Data Sequence generated 

 
Fig. 12. (1,1) Symmetric Extension on Row Input 

Buffer 

 Each input or output buffer consists of two blocks of RAM 
(RAM0 and RAM1) and one controller. Each block of RAM is 
organized into 16-bit width and its size depends on the size of 
image to be processed. RAM0 is to work with Q0 (input 
buffer) or D0 (output buffer) of the DDR interface. Likewise, 
RAM1 is to work with Q1 or D1 of the DDR interface. The 
controller is responsible for generating addresses and all the 
necessary control signals for both blocks of RAM. Since each 
buffer has its individual controller, they can work 
independently and simultaneously. 

 
The controller has two different operation modes: external 

mode and internal mode as depicted in Fig. 11. External mode 
is used when the DWT processor reads or writes data to the 
external DDR SDRAM. In external mode, RAM0 is clocked 
by CLK0, while RAM1 is clocked by CLK180. Upon 
receiving the READ command from the main controller, new 
data from the external SDRAM are read in and stored into 
both of the input buffers. Even numbered columns are stored 
into RAM0 and odd numbered columns are stored in RAM1. 
Likewise, if the WRITE command is received, data in both 
output buffers are written to the external RAM. 

 
In the internal mode, both RAM0 and RAM1 are clocked by 

a single clock signal (CLK0). And RAM0 and RAM1 operate 
in an alternative manner. The operation of input buffer is as 
followed. Data requests are sent by the main controller to 
request data from any or both of the input buffers. The main 
controller also needs to indicate whether the data read out 
from the input buffers are organized in a symmetric extension 
fashion or a normal fashion. Similarly, if the main controller 

wants the any or both of output buffers to store output data 
from the filter banks, it will send out data receive command. 
The output buffers will then store the output data in to their 
RAMs. In order to facilitate the latter writing to external 
SDRAM, even numbered columns and odd numbered column 
data will be stored in RAM0 and RAM1 respectively. 

 
1) Symmetric Extension of Input Data 

Symmetric extension of the input data is realized by 
arranging and supplying the input data to the filter banks in a 
special pattern. Consequently, no extra memory space and 
extra hardware are required for this operation. Since data are 
stored in different ways for the row and column input buffers, 
data are arranged and supplied to the filter banks differently. 

 
For row input buffer, let us consider a simplified example of 

an 8-by-8 image and (1,1) symmetric extension with extension 
length of 4. The row input buffer stores several rows of the 
images each time. RAM0 and RAM1 supply data to filter 
bank0 at alternate cycles. Fig. 12 illustrates the symmetric 
extension operation on the first row of the image. Addresses 
for both RAM0 and RAM1 and data sequence are also shown 
in Fig. 12. Likewise, Fig. 13 shows the symmetric extension 
operation on the first column of the image, assuming that the 
first four columns of data are stored in the COL_IN_BUF. 
Unlike the row input buffer, because all even numbered 
columns are stored in RAM0 and all odd numbered columns 
are stored in RAM1, only one block of internal RAM is used 
to supply data to the column filter bank at any one time.  

 
 
 
 

Fig. 11. State Diagrams of the Buffering and DDR 
Interfacing Unit 

 



 

TABLE 4 
 FPGA RESOURCE CONSUMPTION 

 Slices Flip-
flop 

4-input 
LUT 

Block 
RAM 

Max 
frequency 

(MHz) 
RNS Filter 

Banks 3335 1634 6070 0 28.043 

Main 
Controller 453 172 860 0 100 

DDR 
Interfacing 

and 
Buffering 

865 505 1542 
4K 

Bytes (8 
blocks) 

100 

SDRAM 
Controller 140 73 263 0 122 

 

TABLE 3 
TIMING DETAILS FOR THE RNS-BASE FILTER BANK (NS) 

Sub-filters 
Channels Forward 

Converter LUT Mod Adder 
and Delay 

Reverse 
Converter 

255 16.889 6.916 6.776 
256 0 6.148 4.261 
257 18.837 6.933 7.571 

32.577 

 

RAM0  RAM1 
Addr Data  Addr Data 

0 00 02  0 01 03 
2 10 12  2 11 13 
4 20 22  4 21 23 
6 30 32  6 31 33 
8 40 42  8 41 43 

… … …  … … … 
(a) Data in COL_IN_BUF 

 
RAM 0 0 0 0 0 0 0 0 
Addr 8 6 4 2 0 2 4 6 
Data 40 30 20 10 00 10 20 30 
Mode Initial Extension Normal 
RAM 0 0 0 0 0 0 0 0 
Addr 8 10 12 14 12 10 8 6 
Data 40 50 60 70 60 50 40 30 
Mode Normal Final Extension 
(b) Address and Data Sequence generated 

 
Fig. 13. (1,1) Symmetric Extension on Column Input 

Buffer 
 
 

E. Other Units 
The clock management unit generates clock signals with the 

same frequency but different phases for the processor. It is 
implemented by making use of the dedicated digital clock 
management block provided by the FPGA device. 
 

The host interface allows the 2-D DWT processor to 
communicate with the host computer. Through the host 
interface, original image data are downloaded from the host 
for decomposition and the processed data are uploaded to the 
host for further processing. 

 

V. IMPLEMENTATION RESULTS 
The DWT processor, which is able to process 32×32-pixel 

images, is coded in VHDL and synthesized into the target 
FPGA device and simulated. These VHDL models are 
parameterized so that the synthesized processor can process 
larger images. The complexity of various controllers is 
independent of the size of the image, but the size of input and 
output buffers need to increase to cope with the larger images. 
Table 3 shows the detailed timing for different parts of the 
RNS-based filter bank. Table 4 shows the FPGA resources 
consumed by various modules of the DWT processor. 
Altogether it occupies 93% of the slices and 20% of the block 
RAM available in the target FPGA device.  

 
Trade-offs between slices and block RAM can be made in 

the synthesis of look-up table based modular multipliers. 
These look-up table based modular multipliers can be 
synthesized into slices (as shown in Table 4) or into block 
RAM.  If they are synthesized into block RAM, the utilization 
will be reduced to 37% of total number of slices available. At 
the same time, block RAM usage will be increased to 88%.  

 
All control units and the DDR interfacing and buffering unit 

are working under a main clock signal of frequency 100 MHz, 
while the RNS-base filter banks are clocked by a 25 MHz 
clock signal derived from the main clock. From the simulation 
results, under these clock frequencies and a burst length of 
four for the external SDRAM, it takes 205 sµ to finish a first 
level 2-D DWT decomposition of a 32×32 image, of which 
72 sµ is for accessing the external SDRAM and 133 sµ is for 
FIR filtering. 

VI. CONCLUSION 
This paper reports on the design and implementation of a 2-

D biorthogonal DWT processor based on RNS arithmetic. The 
design of the RNS-based filter banks, various control units and 
the scheduling of data are discussed in detail. The synthesis 
results show that the entire design is able to fit into a 
1,000,000-gate FPGA device. And this design has been 
successfully simulated. 
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